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In this paper we present a definition of weighted Sobolev spaces on curves and find
general conditions under which the spaces are complete for non-closed compact
curves. We also prove the density of the polynomials in these spaces and, finally, we
find conditions under which the multiplication operator is bounded in the space of
polynomials. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In very different areas of mathematics ranging from the partial differential
equations to approximation theory we find the topic of weighted Sobolev
spaces (see, e.g. [HKM,K, Ku, KO,KS, T]). Some particular cases of
Sobolev spaces with respect to measures instead of weights are studied in
[EL, ELWI1, ELW2], where we find some examples of Sobolev spaces related
to ordinary differential equations and Sobolev orthogonal polynomials. We
presented a very deep study of Sobolev spaces with respect to general
measures in the real line in the papers [RARP1, RARP2, R1, R2, R3]. Now
we are interested in Sobolev spaces with respect to general measures along
curves in the complex plane.
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What we understand by a Sobolev norm on a Borel set E<C is the
following: for u = (g, - - -, ) a vectorial Borel measure in E, the Sobolev
norm in W*P(E u) of a function f which is holomorphic on a
neighbourhood of F is defined by

1/p
P
U’(E’/‘.f)> '

Sobolev orthogonal polynomials on the unit circle and, more generally,
on curves is a topic of recent and increasing interest in approximation
theory; see, for example, [CM, FMP] (for the unit circle) and [BFM, M-F]
(for the case of Jordan curves). If E=1y is a simple and locally
absolutely continuous curve, it is clear that the set of holomorphic
functions whose norm in W*”(y, u) is finite is not a Banach space except
when the support of p is finite. In order to obtain a complete space
we have to deal with functions which are not holomorphic. Consequently,
we need to define /) when f is not holomorphic; the precise definition is
presented in Section 2. In this context we talk about a Sobolev norm
although it can be a seminorm; if this were the case we would take
equivalence classes, as usual. When every polynomial has finite W*?(y, u)-
norm, we denote by P¥”(y, i) the completion of polynomials with that
norm.

The zeroes of the Sobolev orthogonal polynomials with respect to the
scalar product in W*2(y,u) have been studied in [LP] in the case of a
segment on the real line. There it is proved that they are contained in the
disk {z € C: |z|<2||M||}, where (M) (x) = xf(x) is the multiplication
operator, considered in the space P*2([a, b], u). Consequently, the set of the
zeroes of the Sobolev orthogonal polynomials is bounded if the multi-
plication operator is bounded. The location of these zeroes allows one to
obtain results on the asymptotic behaviour of Sobolev orthogonal
polynomials (see [LP]). In [LP] they prove something more when they
consider only sequentially dominated measures, i.c. measures such that
#supp py = oo and dy; = f; dy,;_, with f; bounded for 1<j<k. They prove
that if u is a finite sequentially dominated measure in [a,b], then M is a
bounded operator on P*2([a,b],u). Recently, these results have been
improved for measures on compact sets in C (see [LPP]).

It is not difficult to see that the multiplication operator can also be
bounded when the vectorial measure is not sequentially dominated. In
Section 8 other conditions are given in order to have the boundedness of M
even on compact sets in C. In [R1] one of the authors obtains a
characterization of the boundedness of the operator M for measures in R.
Also, in Section 8 (see Theorem 8.1) this result is generalized for measures

k
||f||Wk«p(E,ﬂ) = ( Z Hf</>|
j=0
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on compact sets in C; therefore this theorem is useful in the study of
orthogonal polynomials.

Though we do not have yet the definitions, we state the main theorems
here. The results are numbered according to the section where they are
proved. The first one gives a sufficient condition under which one obtains a
complete Sobolev space. The condition is a bit technical although it is very
general, so we prefer to state the theorem in a short version where this
condition is denoted by: (y, 1) € €. The definition of the class € is in Section
4, Definition 4.2. The theorem is as follows:

THEOREM 5.1. Let wus consider 1<p<oco and u= (uy,...,l) a
p-admissible vectorial measure in y with (y,u) € €. Then the Sobolev space
Wk (y, 1) is complete.

Our main result on the density of polynomials in these spaces is Theorem
6.2. Now, the conditions we need are more restrictive than in Theorem 5.1,
but we have found five general types of measures for which it is true.
We simply name them by types 1, 2, 3, 4 and 5 and the definitions are in
Section 6. These measures include the most usual examples like Jacobi-type
weights (that are measures of type 2).

THEOREM 6.2. Let us consider 1<p<oo and u= (uy,..., 1) a
p-admissible vectorial measure in a non-closed compact curve y:I1 — C.
Assume that y' € W*1°(I) if k=2. If u is a measure of type 1,2,3,4 or 5,
then P is dense in the Sobolev space W P (y, ).

The last result we present here is Theorem 8.1. It gives a necessary
and sufficient condition so that the multiplication operator is bounded
on the space P*?(E,u). The kind of measures that appear here,
extended sequentially dominated (ESD), is a generalization of
sequentially dominated measures. The definition is in Section 5,
Definition 5.1.

THEOREM 8.1. Let us consider 1<p<oo and u= (uy,..., 1) a finite
vectorial measure in a compact set E. Then, the multiplication operator is
bounded in P*?(E, ) if and only if there exists a vectorial measure y' € ESD
such that the Sobolev norms in W*?(E, u) and W*?(E, i) are comparable on
P. Furthermore, we can choose (' = (i, . . ., i) with j0; = p; + p  + -+ +
M-

We also answer (see Theorem 4.1) to the following main question: when
the evaluation functional of f (or £U)) in a point is a bounded operator in
W (7, 1)?
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We also obtain results which partially generalize the classical result on
density of polynomials in I/ of the unit circle to the context of Sobolev
spaces (see Section 7).

Notation. We only consider simple curves which have a locally absolutely
continuous parametrization. In the paper k>1 denotes a fixed natural
number; z; are points along a curve y C C. All the measures we consider are
Borel and positive, and all the weights are non-negative Borel measurable
functions. We can split y; as dy; = d(p;), + w; ds, where (u;), is singular with
respect to the arc-length measure. w; is a weight on y and ds is the differential
of arc-length. We always use this terminology for the Radon—Nikodym
decomposition of w;. We identify a weight w on y with the measure w ds. We
denote by supp v the support of the measure v. If 4 is a Borel set in 7, |4],
% A,/], int4 and #A4 denote, respectively, the length, the characteristic
function, the closure, the interior and the cardinality of 4 (the interior and
the closure of 4 are considered in the relative topology in y). P and P,
denote, respectively, the set of all polynomials and the set of polynomials
with degree less than or equal to n.

If y: I — C is a non-closed curve and #y € I, by a right (respectively, left)
neighbourhood of zy = y(¢) in y we mean the image by y of [t + ¢]
(respectively, [ty — ¢, fo]) for some ¢ > 0. If 7y is the maximum (respectively,
minimum) of / we also have left (respectively, right) neighbourhoods of
7).

If y:1 — C is a closed curve and #, € I, we can consider its periodic
extension y,: R — C, and define left and right neighbourhoods of y(#) in a
similar way.

Finally, the constants (denoted by ¢ or ¢;) in the formulae can change
from line to line and even in the same line.

The outline of the paper is as follows. Sections 2—4 contain the definitions
and some technical results we need. In Sections 5-7 we prove, respectively,
the results on completeness, density and density in closed curves. We prove
the results on the multiplication operator in Section 8.

2. DERIVATIVES ALONG CURVES

In this section we introduce a definition of derivative along a curve
extending the usual complex derivative, which will be crucial in the future.
As far as we know this concept is new. Recall that every curve is simple and
has a locally absolutely continuous parametrization.

DEerINITION 2.1.  (a) Let /=R be any interval and y:7 — C be a curve.
If z;, z, are two distinct points of y(I), we denote by fzzlz g(¢) d{ the complex
integral of the function g along the arc of y joining z; and z,, (which we
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denote by [z1, z2]). We also can consider arcs where one or the two extremal
points are not included, as (z1, z2), [z1, z2) or (z1, z2). If y is a closed curve we
take the arc of y joining z; and z; in the positive sense (according to the
parametrization).

(b) Let zo be a fixed point in y. If y is compact we say that f € ACK(y) if f

can be written as
z (Z _ C)k_l
+/ WO Gt (2.1)

for some & € L'(y,ds) and some polynomial g € P;_;. If y is a closed curve
we require also the function i € L'(y,ds) to verify f () de =0, for 0<
i<k. When y is not compact, we say that f € ACf (y) if it can be split as in
(2.1) with h € L} (y,ds).

() If f € AC, 1Oc(y) and zy € y, we define its derivative f/ along y as

f'(z /(h dg

where ¢'(z) means the classical derivative of ¢(z) and f:o ) (z=07"
(=1)!d{ means h(z).

Obviously, if 7 is a compact real interval, the space AC'(y) is the set of
absolutely continuous functions in 7. If y is a closed curve and f € ACK(y),
we have f h(¢) (z — C)kfl d{ = 0 for every z € y. This property is equivalent
to fV) belng contlnuous in y for 0<j <k, where f1) denotes the jth derivative
(according to the previous definition) of f.

We also notice that it is natural to define the derivative along y in this
way, since this is the “inverse” of integration:

// é Ck dgdé—// ¢ kzdédg

z o -1 ¢=z
-/ h(o[(fkﬂ)!l dt

z z k—1

Remark. Observe that if f is holomorphic in a region containing y, then
1" is the usual complex derivative of f at almost every point of 7.
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Next, we prove that the definition of derivative is independent of the
representation of / we are using. Without loss of generality we can assume
that 7’ #0 almost everywhere since the definition of f” does not depend on
the parametrization. In fact, we shall see that the representation is unique.
Let us suppose that

f(2) = q(2) + Hi(z) = r(2) + Gi(2),
where ¢(z) and r(z) are polynomials with degree at most k — 1 and
B z (Z _ C)k_l B z (Z _ é/)k—l
me) = [0S e ae= [0S

We want to see that ¢ = r and g = h. Observe that

- oy
[ o-n0 e -u-ne

We proceed now by induction. Let us denote v =g — h. For k=1, the
function V(z) = ffo v({) d{ is constant. Tt follows that fff v(p(0))y (1) dt =0
for all #1,# € I and this implies that v(y(z)) = 0 almost everywhere in 1.
Therefore v =0, i.e., g=hand g =r.

Suppose now that

/ o) E= L g

n!

is a polynomial of degree at most # if and only if v = 0, and consider the
function V' € P, defined by

7 z (Z_é/)nJrl
V(z) = /ZO U(()md?

and therefore

T \ B n
Vep(r) = wi(r) = [ oo () DTy i,
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As Y’ #0 almost everywhere it follows that

V'(z) = [Z U(C)ﬂdé

n!

almost everywhere and so everywhere by continuity. Since V' € P,, the
induction hypothesis implies that v = 0.

We need to prove now that this definition does not depend on the choice
of the point zy. To see this, let us denote

z 7 k—1
Hia(e) = | h<c>((kf)l)!dc

<0

If z, is another point in y, then

Hio(z / W d¢+/ he dc—Qk<)+Hk,zl(z),
(2.2)

where Oy 6 Pk 1. Observe that (2.2) is true for a closed curve y since
then f h(Q) (z = 0¥ " de =0 for every z € y. Consequently, H . =0+
Hﬁk Therefore, in what follows, we can assume that z, is arbitrary but
fixed.

Finally, we need also to prove that our definition does not depend on k.
Indeed, we shall show that if /€ ACL (y) then f € ACE;!(y) and the

loc
corresponding definitions of derivative along 7 coincide. Let us suppose

that
/ h({ dC and

+ / H(é)—ik__ B

with ¢ € Pr_; and Q € P;_». Then we can write ¢(z) = ¢o(z) + 4(z — zo)
/(k—1)! with gy € Py_, and therefore, integrating by parts in the first
integral,

k—1

Y (Z _ C)k*l du _ (Z _ C)k72

(k—1)" __(k—m!ﬁ’

do=hQds, o0 = [ ndz
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(z— !

ke
(z — 20) — o(0)

1) =a0le) +

z 7 k=2
—ate)+ [ o0 G

This means, by the unicity of the representation for the same k&, that
= Q and v = H. On the other hand, integrating by parts again, we have

that
el

Z—Z k 2
:q6(2)+€ 0) / h(C dC
2o

= i) + /U@%;%Tﬁ

(o a5 )

The proof of the following three results is trivial.

LEMMA 2.1. If f,g € ACL_ (y) and o, B € C, then af + Bg € ACE (7).

LEMMA 2.2. f € ACE (y) if and only if the jth derivative fV) along y
belongs to AClOC (7).

LEMMA 2.3. If f € ACL (y) and zy € v, then

P =0
+L;Mo(k_n!&,

where q(z) is the (k — 1)th Taylor polynomial of f centered at zy, i.e.,

k=1 £() (5, :
- Zf jﬂ D oy and h(z) = ().
j=0

DEFINITION 2.2. We say that f € Ck(y) iffeACl’;CQ) and f® is
continuous in 7.
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Next, we study Leibniz’ rule.

LEMMA 2.4. If F,G € ACL (y) then FGe ACL.(y) and (FG) =
F'G+ FG'.

Proof. We can write
FO=Fe + [ SQdL 6 =6+ [ g0
where f,g € L\ (7,ds) and z,zj € y, but,

F2)G(2) = Flan) Glao) + |  (Fz)g(©) + Gl () de

+ (/Z:f(é) d;) (/0 g(0) dC) (2.3)

and applying Fubini’s Theorem we get

( /f ©) df)( / 9(¢) dC) = / / (8 9(0) dé dt

- [ [ rouaa
¥ / | e aca:
- [ [ roaa
* / /:f(é)g(é)dédg
:/ /:f(ﬁ)g@)dgdg
<[ /:f(é)g(é)dédg
_ /Z:f(é) (G(2) - Glan)) d
+ [ a0 F© - ) ac

20



50 ALVAREZ ET AL.

This and (2.3) give

F(2) G(z) = F(z0) Glz0) + / (F(0) 9(0) + GRS (0)) e,

20

with Fg+ Gf € Ll (y,ds), ie, FG€ AC. (y) and (FG) =F'G+ FG
almost everywhere in y. 1§

Proceeding inductively we obtain that if F, G € AC () then (FG)(k Ve

ACF (y) which implies that FG € ACF_(y), that is

loc\V loc\?

LEMMA 2.5. Let F,G € ACL (y). Then FG € ACL.(y) and verifies

]oc
Leibniz’ rule, i.e.,
k
= (?)FU)GUH‘)_
=0 \/

LEMMA 2.6.  Let us consider y:1 — C with ' #0 almost everywhere.
Thenf € ACL () if and only if f oy € ACL (I). Furthermore, if f € ACL(7)
we have

%f(y(t)) =f'(y(0))y' (1)  for almost every t € I.

Proof. 1f f € ACL (y) we obtain directly f ¢y € ACioc(1). Fix now 19 €
I.If foy € ACioc(I) then d(f ov)/dt € L} .(I) and so

L4 oy () de,

160 =160 + [ 4

ty
for every t € I. Therefore, for every z € v,

G+ [ a0dn it 0 = (S S0 67O,

Finally, let us introduce our last concept on derivatives:

DEefFINITION 2.3.  We define the D-derivative of a function g in 7, as

Dlg](1) = and D' =Df'oD.

It is natural to ask what functions belong to the class ACL (7). The
following results answer this question if y is smooth enough.
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LEMMA 2.7.  Let us suppose that y € ACK _(I) and y'#0 in I. Then f €

ACE () if and only if foy € ACK.(I). Furthermore, if f € ACK (y) we
have

DI[fory](t) =fD(p(r))  for 1<j<k and almost every te 1. (2.4)

Proof. Assume that f oy € ACK

loc

(I) and fix #p € I. Lemma 2.6 gives
F6) =S + [ DIF 3127 (7).

Integrating by parts, we have, for 1<j <k, that

Consequently, we obtain

k—1 . ;
SO =" D/[foy]([o)w
Jj=0 :

t _ Tk—l
[0 MOy

Then /" € ACf (y) and we have (2.4). 1

Assume now that f € ACf (7). We prove (2.4) by induction in j. Lemma
2.6 gives D[f ©y)(t) = f"(7(¢)). Assume that D/[f o ](¢) = fU)(y(t)) for some
j (1<j<k). Since f¥) € AC] (y) we have by Lemma 2.6 that fV)(y(1)) =
DI[f o3](1) € AC, (1) and

_

(D[S 7)) =SV ((0)7'(1).

ISR

t

Therefore D/F![f oy
that

£) = fU*D(y(¢)). This gives (2.4). Now it is immediate

—~

(o0, QU o) (o0 D D0

k71 o =
D [f V](t) y’(l‘)k71 y,(t)zk—l

7

(2.5)
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where Q is a polynomial. Since f*~1 € AC| (y), Lemma 2.6 gives D*~![f
oy](2) = f*D(3(r)) € ACL(I). This fact and (2.5) give (f >7)* ™V € 4C].,
(1).

COROLLARY 2.1.  Assume that y € C*(I) and y' #0 in I. Then f € C*(y) if
and only if f oy € CK(I).

3. SOBOLEV SPACES

Obviously one of our main problems is to define the space W*?(y.u).
There are two natural definitions:

(1) Wk?(y, ) is the biggest space of (classes of) functions f regular
enough with [[ /1]y, ) <o0.

(2) Wk#?(y, ) is the closure of a good set of functions (e.g. C*¥(y) or P)

with the norm || - [[ s ;.-

However both approaches have serious difficulties:

We consider first approach (1). It is clear that the derivatives fV) must be
derivatives along y in order to obtain a complete Sobolev space. Therefore,
we need to restrict the measures p to a class of p-admissible measures (see
Definition 3.6). Roughly speaking, u is p-admissible if (), for 1 <j<k, is
concentrated in the set of points where /) is continuous, for every function
f of the space; otherwise /) is determined, up to zero-Lebesgue measure
sets. Then (y; ), is identically zero. However, there is no restriction on the
support of (),

This reasonable approach excludes norms appearing in the theory of
Sobolev orthogonal polynomials. Even if we work with the simpler case of
the weighted Sobolev spaces W #(y, w) (measures without singular part) we
must impose the condition that w; belongs to the class B, (see Definition 3.2)
in order to have a complete weighted Sobolev space (see, e.g. [KO]).

Approach (2) is simpler: we know that the completion of every normed
space exists (e.g. (C*(), | [lyasy ) OF (Pl [lys(y ), but we have two
difficulties. The first one is evident: we do not get an explicit description of
the Sobolev functions as in (1) (in Section 6 there are several theorems which
prove that both definitions of Sobolev space are the same for p-admissible
measures). The second problem is worse: The completion of a normed space
is by definition a set of equivalence classes of Cauchy sequences. In many
cases this completion is not a function space (see [R1, Theorem 3.1 and its
Remark]).

However, since we need to work with the multiplication operator in P*?
(y, 1), we have to choose this second approach if u is not p-admissible. First
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of all, we explain the definition of generalized Sobolev space on a curve. Let
us start with some preliminary technical definitions.

DEerINITION 3.1.  We say that two functions u, v are comparable on the
set A =y if there are positive constants ¢y, ¢, such that ¢;v(x) <u(x) <cv(x)
for almost every x € A. Since measures and norms are functions on
measurable sets and vectors, respectively, we can talk about comparable
measures and comparable norms. We say that two vectorial weights or
vectorial measures are comparable if each component is comparable.

In what follow, the symbol @ < b means that a and b are comparable for a
and b functions, measures or norms.

Obviously, the spaces L”(A,u) and LP(A,v) are the same and have
comparable norms if u and v are comparable on A. Therefore, in order to
obtain our results we can replace a measure u by any comparable measure v.

To define a Sobolev space along a curve y we consider first a class of
weights which plays an important role in our results.

DerINITION 3.2. If 1<p<oo, we say that a weight w belongs to
B,([z1,22]) if and only if

w e LV (z,z))  if p<oo,
w e L'Y([z1,22]) if p=o0.

Also, if J is any arc of y we say that w € B,(J) if w e B,(Jy) for every
compact arc Jo=J. We say that a weight belongs to B,(J), where J is a
union of disjoint arcs | J,., J;, if it belongs to B,(J;), for i € A.

If the curve y is R, then B,(R) contains the classical 4,(R) weights
appearing in Harmonic Analysis (see [Mul] or [GR]). The classes B,(Q),
with Q=R” and 4,(R")(1 <p<oo) have been used in other definitions of
weighted Sobolev spaces on R” in [KO, K], respectively.

DErINITION 3.3. Let us consider 1<p<oo and a vectorial measure
u=(uy,--.,u) defined on the curve y. For 0<j<k we define the open
set

Q; = {z € y:3 an open neighbourhood V" of z on the curve y
with w; € BP(V)}

Remark. Observe that we always have w; € B,(£;) for any 1 <p<oo and
0<j<k. In fact, Q; is the greatest open set U with w; € B,(U). Obviously,
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Q; depends on u and p, although p and p do not appear explicitly
in the symbol ;. Applying Holder inequality it is easy to check that
if fUerr(Q,w) with 1<j<k, then [0 eLl (@) and fU-D¢
ACie(2)-

The following definitions also depend on u and p, although p and p do not
appear explicitly.

Let us consider 1 <p < oo, a vectorial measure p = (g, . . ., 1) and zy € y.
We can modify the measure u in a neighbourhood of zj, using the following
version of Muckenhoupt inequality in curves. This modified measure is
equivalent in some sense to the original one (see Theorem 4.1).

THEOREM 3.1 (Muckenhoupt Inequality in Curves). Let us consider 1<

p<00, [20,21] Sy and pgy, uy measures in (zo,z1]. Assume also (yy), =0 if
p = oo. Then there exists a positive constant ¢ such that

Z1
H/ 4(0) dCH <dllg]
z L ((z0,21],10)

for any measurable function g in (zo,z\], if and only if

Lol (3-1)

CS(UP : IuO((ZO7C])”M}II||L1/(F*1)([§,z]])<OO if 1<p<oo,
€(20,21

ess sup wy({) [Zl wi (&) dé| < oo if p= o0, (3.2)
¢

(€(z0,21)

where ess sup refers to the arc-length.

Remark. This inequality is already known if y is contained in the
real line (see [Mu2, M, p. 44] for 1<p<oo, and [RARP1, Lemma 3.2] for

p = 00).

Proof. We only deal with the case 1 <p<oo; the cases p =1 and p = ©
are similar. Consider the arc-length parametrization y : [a,b] — [zo, z1].

We prove first that (3.2) implies (3.1). We can define measures 1, 1} (a, b]
as follows: p*(D) = p;(y(D)) for any Borel subset D of (a,b] and for

i =0, 1. Consequently, fflzf dy; = f:(foy) dy¥ for any f € L'(y, ;). Note
that w¥, the absolutely continuous part of uxf, is equal to wj oy almost

everywhere, since [y'| =1 almost everywhere. By condition (3.2) we
have

-1
sup g ((a, D)I1OWT) ™ o .7y <005
te(a,b)
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since wi = w0y and |y'| = | almost everywhere. Muckenhoupt inequality

in the real line gives

b
[ l9((0)] d

for any measurable function g defined in (zo,z;]. This inequality and the

§C||g ° y”U’((a,b],uT)’
L ((ab]u5)

faCtS”goyHU’((a,b]u ||g||l/’ uy) and
z 7(b)
’ JGL - / 9(0) d
z Lr((z0,71],10) (1) L7 ((a,b] 1)
b
—||/ ston
t Lr((abluf)
< / lg(y(r))| dz :
L((ablsf)

give (3.1).
Assume now (3.1). Fix { € (zo,z;) and consider the function g in (z, z/]
defined by

g9(z) = wi(2) " VgL @Y E),

if wy € B,((z0,21]), where A is a set of zero length in (z,zi] with (u;),
concentrated in 4. If w; ¢ B,((zo, z1]), we can consider w; + ¢ instead of w,
and take the limit as ¢ — 0. We have

191 1) = / w1 ()] = (L (33)
and
z1 4 C 1 )4
\ [ o@d > [ @ ae] dno)
z Lr((z0,21)10) Z 1Vz
4 1 V4
- / / 9(&) de| dpo(2)
20 4

= o (20, EDIwi 1RG0, (34)
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since
l b
[ awde= [ ot
C t

b 1
- / w1 (5(2))" V) ¥ (1) de = / wi (&)~
t {

if y(¢) = ¢. Now (3.1), (3.3) and (3.4) give (3.2). 1

DEFINITION 3.4. A vectorial measure @ = (g, . . ., ) is a right comple-
tion of a vectorial measure u = (g, - . ., ) with respect to zy € y in a right
neighbourhood [z, z1], if 7, = g in 9, I; = p; in the complement of (z, z1]
and

=+ in (zg,z;] for 0<j<k,
where fi; is any measure satisfying:
(i) A((z0,21]) <00 if 1<p<oo,

(i) (), =0 and W; € L>*([zp,21]) if p = oo,
(111) Ap(ﬂj,ﬁj+1)<oo, W)l[h

do -1

ds

if 1<p<oo,

Ay(v,0) = sup v((zo,C])‘

(e LoD ({Gz1])

Alv,0) = esssup 2 (1) / (‘f,j>_l<s>|df|.

(e(z0,21)

The Muckenhoupt inequality guarantees that if /) € L?(y;) and fU*1 €
L’ (@), then f Ve rr (7;). If we work with absolutely continuous
measures, we also say that a vectorial weight w is a completion of u (or
of w).

The following is an example of a completion when 7 is an interval. It can
be generalized to curves in an obvious way.

ExaMPLE. We choose w; == 0if W1 & B,((v,y +¢]); if Wit € B,([y,y +
e]) we set W;(x) = lin [y,y + ¢]; and if W1 € By((y,» + )\ B,([y,y + ¢]) we
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take W;(x) =1 for x € [y +¢/2,y + ¢], and

R d y+e L B —p+1
Wj(x> :E{ (/ Wj+11/(p 1>)

(= D)Wy (x )““’"”

- f}7+8 ——1/(p— l
X ]+1

if 1<p<oo,

. d .
Wi(x) = ||”]+1||Lo~ (wy+e) T (HUH”Lm v(y+g])) if p=1,

y+e -1
W;(x) = minq 1, ( / Wj7+11> if p = oo,
X

for x € (y,y +¢/2).

Remarks.

(1) We can define a left completion of u with respect to zy in a similar
way.

(2) 1£w; 11 € By([z0,21]), then A, (i, Wj11) < oo for any measure fi; with
#:((z0,21]) <oo if 1<p<oo and for any bounded weight W; if p = co. In
particular, A,(1,W;1) <oo.

(3) If u,v are comparable measures, v is a right completion of v if and
only if it is comparable to a right completion z of p.

(4) If p,v are two vectorial measures with the same absolutely
continuous part, then m is a right completion of u if and only if it is a
right completion of v.

(5) If  is a right completion of u with respect to zo in (20,21] and
7 € (z9,21), the measure u* defined by

_ {,u in [Z(),Zz],

= .
uo1m “/\ [z0, 22],

is a right completion of u with respect to zo in (zo, z2].

(6) If @ is a right completion of g with respect to zy in (zo,z;] and
z1 € (20,22), 1 is also a right completion of u with respect to zg in (zg, z5] (it
is enough to take g =0 in (zy, z3]).

(7) Let us fix z3 € (z9,21]. If for every z; € (z9,2z3] we have Wiy ¢
B,((20,22]), then there exists some z4 € (29, z1] such that every fi; must be 0
in (Z(), 24).
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DErFINITION 3.5. For 1<p<oo and a vectorial measure p, we say that a
point zy € y is right j-regular (respectively, left j-regular), if there exist a
right completion @ (respectively, left completion) of u in [zg,z] and j<i<k
such that Ww; € B,([zo,z1]) (respectively, B,([zi,z0])). Also, we say that a
point zy € y is j-regular, if it is right and left j-regular.

Remarks.
(1) A point zy € y is right j-regular (respectively, left j-regular), if at
least one of the following properties is verified:
(a) There exist a right (respectively, left) neighbourhood [z, z|]
(respectively, [z1,2¢]) and j<i<k such that w; € B,([zo,21]) (respectively,
B, ([z1,20])). Here we have chosen w; = 0.

(b) There exist a right (respectively, left) neighbourhood [z, z|]
(respectively, [z1,z]) and j<i<k, o >0, 6<J, with 6, = (i —j)p—1if 1
<p<oo and O :=i—j— 1, such that w;(z)=u|z — z|°, for almost every
z € [z0,21] (respectively, [z1,z]) and we have |z — zo| < |y~'(z) — 97 '(z0)| in
[z0, z1] (respectively, [z1,z0]), when y is the arc-length parametrization. See
Lemma 3.4 in [RARPI].

(2) If zy is right j-regular (respectively, left), then it is also right
i-regular (respectively, left) for each 0 <i<j.

(3) We can take i = j + 1 in this definition since by the second remark
after Definition 3.4 we can choose W; = w; + 1 € B,([z0,21]) for j<I<i, if
j+1<i.

(4) If zg is right j-regular, by Remark 3 there exists a right completion i
of wu with W € By([z0,z1]). If furthermore wy € B,((20,22]) with
z1 € (20,22) we can assume that W € B,([z0, 22]).

(5) If p,v are two vectorial measures with the same absolutely
continuous part, then z, is right j-regular (respectively, left) with respect
to p if and only if it is right j-regular (respectively, left) with respect to v.

When we use this definition we think of a point {z} as the union of two
half-points {z*} and {z~}. With this convention, each one of the following
sets:

(z0,21) U (z1,22) U{z]} = (20,21) U (2], 22) # (20, 22),
(z0,21) U (z1,22) U{zy } = (20,21 )] U (21, 22) # (20, 22),

has two connected components, and the set

(z0,21) U (21,22) U{zy } U {2} = (20,21) U (21, 22) U {z1} = (20, 22),

i1s connected.
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We only use this convention in order to study the sets of continuity of
functions: we want that if f € C(4) and f € C(B), where 4 and B are union
of arcs, then f € C(A4 U B). With the usual definition of continuity in an arc,
if f € C([z0,21)) N C(|z1,22]) then we do not have f* € C([zy, z2]). Of course,
we have [ € C([zo,z2]) if and only if / € C([zp,z7]) N C([z],z2]), where by
definition, C([z],z2]) = C([z1,22]) and C([zo,z7]) = C([z0,21]). This idea
can be formalized with a suitable topological space.

Let us introduce some more notation. We denote by QV) the set of
j-regular points or half-points, i.e., z € Q) if and only if z is j-regular, we
say that z+ € QY if and only if z is right j-regular, and we say that z~ € QU)
if and only if z is left j-regular. Obviously, Q%) =@ and Q. U---U
Q.= QY. Observe that QV) depends on p (see Definition 3.5).

Remark. 1f 0<j<k and J is an arc in y, J= QY then the set J\ (Qit1 U
U Q) is discrete: If 27 € J\(Qj41 U+ - - U @), there exist (z,z1] = J, a right
completion @ and j<i<k with W; € B,([z,z1]). Then there exist z € (z,zi]
and i</<k with w; € B,((z,z:]) and consequently (z,z0) S Q1 U---UQy
(see Remark 7 to Definition 3.4). The same is true for z— with the obvious
changes.

DEfFINITION 3.6. We say that the vectorial measure u = (g, ..., i) is
p-admissible if

(= (w)lg)(\QY) =0 for 1<j<k.

We say that p is strongly p-admissible if supp(uj—(w/)|9f)§Q<’), for
I1<j<k.

We use the letter p in p-admissible in order to emphasize the dependence
on p (recall that Q) depends on p).

Remarks

(1) There is no condition on .

(2) We have (i), =0 and wy =0 in almost every z € y\Qy, since
Qk) = ¢.

(3) Every absolutely continuous measure w with w;(z) = 0 in almost
every z € y\Qj for 1 <j<k is p-admissible.

(4) Recall that we are identifying w; with the measure w; ds.

(5) This definition is more general than the definition of p-admissible
measure in [RARP1]; there we always assume w;(z) = 0 in y\Qj. There exist
weights which do not satisfy this reasonable condition: Consider a Cantor
set C in [0, 1] with positive length and define w; =1 in C and w(x) ==
dist(x, C) if x € R\ C; it is clear that Q; = R\ C and w; = 1 in C.
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DErINITION 3.7 (Sobolev Space). Let us consider 1<p<oo and
u= (to,---, 1) a p-admissible vectorial measure. We define the Sobolev
space Wk?(y, i) as the space of equivalence classes of

VEP(pv) = {f 1y = C|fV e AC! (QV)) for 0<j<k and
||f(j)HU(~/,u/-) <00 for Ogjgk}a

with respect to the seminorm

k 1/p
||f||W“’=I’(y7#) = ( Z |f(l>||p)(«/“u1)> for 1<p<oo

j=0
and
||f||Wk->c(y.,u) = 0121@ ||f(i)HL°0(y,Mj)7
where
g1l (i) —max{ess sup [g(z)|wj(z), sup |g(z)|}
€y z€supp (4;),
and we assume the usual convention sup § = —oo.

Remark. Tt is natural to ask for fV) e ACL, (QU ), since when the
(1), -medsure of the set where | £U)| is not continuous is positive, the integral
J f(’ I d(u,), does not make sense.

4. TECHNICAL RESULTS

LEMMA 4.1. Let 1<p<oo, I =[z9,z1] a compact arc in y and p=
(o, - i) a p-admissible vectorial measure in I, with (z,z]< Q%Y for
some 0 <ko<k. If we construct a right completion T of p with respect to the
point zg, satisfying ; = w; for ko <j <k, then there exists a positive constant ¢
such that

ko ko—1

C‘|9(7>||U(1,,1j) S Z ||g(i)||U(1,,u,-) + Z |g<i>(zl)|
i— i=j

for all 0<j <k and g € V*P(I, ). In particular, we have
ko—l

C||g||wk-ﬁ(17ﬁ) < ||g||wkw(1,ﬂ) + Z |QU)(ZI)|7
Jj=0

for all g € VE2 (I, p).
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Proof. The fact i, = u; for ko<j<k and the first inequality give the
second one, Then we only need to prove the first inequality. If g € V52(I, ),

we have gU) € ACL ((z0,21)) since (zo,2]=QY =Q® 0~ Muckenhoupt
inequality gives

cllg” () = a" gy <N i)

for 0<j<ky (we can consider the point z; as the limit of the completion by
Remarks 5 and 6 to Definition 3.4). Then we have for 1 <p< oo,

ellg 0.7y < U817, + I (1))

since fi;(I) <oc if 1 <p<oo, and W; € L*(I) and fi; is absolutely continuous
if p = oo. This inequality gives now

ellg? lonrz) < N9 vty + 197N a ) + 169 (20)]

for 0<j<ko. This fact and 1, = , prove the first inequality. 1

LEmMA 4.2. Let us consider 1<p<oo, I a compact arc in v, zy € int]
and ;. an absolutely continuous measure in I, with wy € B,(int I). Assume
also that Q) =TI for 1= (0,...,0, ). Then, there exists a positive constant
¢ with

<9t )

H/o (él]cui(%! G- L=(1)

for every g € ACE _(intI).

loc

Furthermore, if I; = Q" isa compact arc (0<j<k), then there exists a positive
constant ¢ with

’ / P

o (k—j—=1)!
for every g € AC]]f)C

Proof. We prove the first inequality; the second one is an immediate

consequence of it. Without loss of generality we can assume that

g € VFP(I,p), since otherwise [|g¥]|,,;, )= o0, and the inequality is

trivial. Assume that I =[z),z;]. Since z; is right O-regular, by

<C||g(k>||u(l,uk)’
L=(I)

(int 7).
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Remark 4 to Definition 3.5, there exists a right completion g of u with
respect to z;, with W, € B,([z1,z]). Then, by Lemma 4.1 we have that

k-1
g iz z0170) < N9 wro(iz, 2000 + Z 19 (z0)|

=
for all g € V*?([zy, 0], ), and so
g1 2 (121 200 < N9 221207 F 19GOS NG | (121 20)7,) + 19(20)]

k—1

< ellgllwir g ¢ Y 197 (z0)].
J=0

A symmetric argument gives

9 e (20,200) S €l i,z + € Z 197 (z0)|

Since the function

z k)
)= [ -0

verifies a¥)(zo) = 0 for 0<j <k, the proof is finished. 1

ProPOSITION 4.1.  Let us consider 1<p<oo, I a compact arc in 7y and
w=(uy,0,...,0,u) a vectorial measure in I with w, absolutely continuous,
wy € By (int I') and #supp(ug|p0,) = k. Define

X ={/ € ACLD) 11/ ™| (1) <00}

Then, given compact arcs Ing(’) NI for 0<j<k, there exists a positive
constant ¢ with

k-1
¢ z(; ||f(]>\|m(1j)<||f||u(1,ﬂ“) + ||f(k>\|u(1,,l,c) Jor every f € X.

Proof. Without loss of generality we can assume that y,(I) < oo, since in
other case the right-hand side of the inequality is greater. Without loss of
generality we can assume that Q9 N1 =1, since otherwise we can change 7
by IyUI, U---UI_, UA, where A is any compact arc contained in Q) 01
and with #supp u0|6 )=k. We can assume also O£, 1Sl ,=---Sly=1
and even [; = [ if Q nI=1.
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We prove first that the normed spaces (X,]||-||,) and (X,]||-]||g) are
complete, where

114 = 1) S Mz 17115 —lef(’ 2y + 1N )

We start now by proving the completeness of the space (X,||-]|,).
Observe first that || - ||, is @ norm in X: if || /% 114 = 0, then [ € Pp_y;
this fact and |[ /[, ,,) = 0 gives f =0 in I, since || - ||, Is @ norm on

Py (recall that y, is finite and #supp(uy|g0;) =k). Let us consider a
Cauchy sequence {f,} C (X,]|-]||,). Each function can be written as

k=1 () z (k)
_Z w (20) i S (©) -
)_j:o J' (Z_ZO)]_F/:\O (k_l)'(Z_C)k ldc;

with zy € I;_. So,

fn m an ZO m ( ) (Z - ZO)j

k
/ﬁl —M()(Z_C)k_ldc-

Lemma 4.2 gives

(k)
/f;l fn()( 7C)k71d§
Lr(Iuo)

k) (k)
/ﬁ’l _lm ()( _C)k_ldC

<Al =S8Nz — O,

<c

L>(I)

as n,m — oo, since g is finite. Using that || f, — f]

(1) — 0asn,m— oo

we obtain
k=1 ()
an (20) |fm (20) (z—zo)’ —0,
=0 4 (1. p1)
as n,m — oo. Since || - ||;,(,,) s @ norm on Py, we have that £, (z0) — ¢
for some constants ¢;, with 0<j<k — 1 and
() L )
ZM(Z—ZO)/ 0, @4.1)
PR

Lr (1)
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as n — oo. We obviously have functions Fy € L”(I, ), Fr. € L?(I, ) such
that

1Eo = fall ot ) + 11 = 1N g ) — 0,

as n — oo. Now, we can define

k=1 ' -
=5 oo+ [ G0

Next we prove Fo=Fy, Up-almost everywhere in I; this fact gives
[|[Fo — full4 — 0 as n — oco. We have this by (4.1) and

“ 100 - Fl©) -
' /:o W(Z*C)k Ld¢

<l AP = Fillpr) = 05

( Lr (1)
as n — oo. This gives the completeness of the space (X, || - || ,)-
We prove now the completeness of the space (X, || - ||5). Let us consider a

Cauchy sequence { f,} C (X, || - ||3). For each 0<j<k there exists F; with

|| £ _fn(j)HL*(I/) —0 for 0<j<k, || Fi —fn(k)‘

i) — 0

as n — oo. If we fix zy € I;_1, we have

L o R '
1) = ;@—(ﬁ)ﬁz a7 [ e

for z € I; and 0<j<k. By Lemma 4.2 and the uniform convergence off,f” in
I;, we have

k=l ps N . |
=2 e o e e

for z€l; and 0<j<k. Consequently Fé/) =F; in I;, for 0<j<k and
Fék) = F in I. This gives the completeness of (X, || - ||)-

Observe that || f||,<c||f]|z for every f € X. Since (X,]|-||,) and (X,
|| - ||z) are Banach spaces, the open mapping theorem in Banach spaces gives
| fllg<c|lfll4 for every f € X, and this finishes the proof. &

PROPOSITION 4.2.  Let us consider 1<p<oo, I a compact arc in y and
1= (Ko, ---, 1) a p-admissible vectorial measure in I, with wy € B,(intI),
and #supp(pig| g ~y) = k. Then, given compact arcs LY NI for 0<j<k,
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there exists a positive constant ¢ with

k—1
¢ Z ||f(/>||Loc(1j) < ||f‘|Wk.p(17H) Sfor every f € V(I p).
J=0

Remark. Observe that in Proposition 4.1 the set QU only depends on w.
However, in Proposition 4.2 the set Q7) depends on Wity .o, Wk

Proof. By Proposition 4.1 the result holds if /; C int /. Therefore, we
only need to obtain the bounds in a neighbourhood of 9I. If I = [z}, z3],
assume that z; € I; for some 0<j <k (the case z; € I; is symmetric). Since
I; C 9(7)01, there exist a completion @ and zy € (z1,z2) with W €
B,([z1,20]). Then Lemma 4.1 and Proposition 4.1 give

1S ey 2 < W ey 2o + 1S9 (20))

< Al ez + 179 0)
k—1 _

< el flwsoer i +¢ 3 L@ <l iy O
i=0

DErFINITION 4.1. Let us consider 1<p<oo and pu a p-admissible
vectorial measure in y. Let us define the space J# (y, 1) as

A (o) ={g:Q% - C/g e Vk’P(y,,ulgw)), ||g||WkAp(.V‘mQ(O)) =0}.

A (y,u) is the equivalence class of 0 in W P(y, ul o0 ). Therefore,
| [lwsy ) 18 @ norm if and only if #°(y,u) = {0}. It plays an important
role in the study of the multiplication operator in Sobolev spaces (see
Theorem 8.3 below) and in the following definition of classes ¥ and %,
which will be crucial in the study of Sobolev spaces (see Theorems 4.1, 4.2
and 5.1 below).

The case in which || - [[ s, ) is @ norm is the most interesting. However
we need something more in order to prove part (a) of Theorem 4.1 below:
this additional condition is what we present in our following definition of
class %o. Roughly speaking, u € o if || ||yt (py,,) 1S @ norm for some
sequence of compact sets {M,,} growing to y. This condition is exactly what
we need since in the proof of Theorem 4.1 we approximate y by compact sets.

If u ¢ €y we still can prove part (b) of Theorem 4.1 by adding some Dirac
deltas to p,; we only add the exact amount that we need. This leads to the
definition of class %.

DErFINITION 4.2. Let us consider 1<p<oo and pu a p-admissible
vectorial measure in y. We say (y,u) belongs to the class %, if there
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exist compact sets M,, which are a finite union of compact arcs in 7y, such
that

(i) M, intersects at most a finite number of connected components of
QU---UQy,

(i) A (My, ) = {0},
(111) MngMn+l7
(iv) U, M, = Q.

We say that (y, u) belongs to the class ‘5 if there exists a measure p =
Lo + D mep Em0=, With ¢, >0, {zm} c Q9 DN and (y,4) € 6o, where
W= (g, Uy, - - ) is minimal in the following sense: there exists {M,}
corresponding to (y, i') € €, such that if uf = ufy — ¢, 0., with my € D and

“mygy

1= (ugs tys -5 i), then A (M, 1") #{0} if zpn, € M.

Remarks

(1) The condition (y,u) € ¥ is not very restrictive. In fact, the proof of
Theorem 4.1 gives that if Q®\(Q, U---UQ;) has only a finite number of
points in each connected component of Q) then (y,u) € €. If furthermore
A (y, 1) = {0}, we have (y, u) € 6.

(2) Since the restriction of a function of ' (y, u) to M,, is in 4 (M, i) for
every n, then (y, 1) € €, implies 7 (y, u) = {0}.

(3) If (y, 1) € %o, then (y,u) € €, with ¢/ = p.

(4) The proof of Theorem 4.1 gives that if for every connected component
Aof QU UQ we have (A, u) = {0}, then (y, 1) € %o. The Condition

#supp Nol}me) >k implies J{(Z, w) = {0}.

The next results play a central role in the theory of Sobolev spaces in
curves. The first one answers to the following main question: when the
evaluation functional of f (or f)) in a point is a bounded operator in
WEe(y, 1)?

THEOREM 4.1. Let us consider 1<p<oo and p= (tg,---l) a p-
admissible vectorial measure in . Let K; be a finite union of compact arcs
contained in QV), for 0<j<k and 7 a rlght (or left) completion of u. Then:

(@) If (y, 1) € 6 there exist positive constants ¢; = ¢1(Ko, . .., Ky_1) and
¢ = (i, Ky, ..., Kx—1) such that

k—1

al z(; ||g(i)||L°°(K/-) < ||g|kav1’<y”u)? 02l|g||Wk-p(y,,—,) < ||g|lW/€-17(y.u)’
J:

Vg € VE2 (3, ).
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(b) If (y, 1) € € there exist positive constants ¢z = ¢3(Ky, ..., Ki_1) and
cs = c4(i, Ko, . .., Ki_1) such that for every g € VFP(y, ), there exists gy €
Vk?(y, 1), independent of Ky, ..., Ki_1,c3,c4 and Ti, with

||gO - g||W"v1’(y‘,u) = 0’

k—1
es 3 198 Moy <9l lweor g = 191l wogyy
j=0

callgollweo iz < gl weo (-

Furthermore, if go,fo are, respectively, these representatives of g, f, we have
with the same constants c3, cs

k—1
s D08 = 1 ey <N = Aty
j=0

allgo = fol ey <Ng = F oy

Proof. The main ingredient in the proof is Proposition 4.2. We only need
to cut in an appropriate way the compact sets K; in order to fulfill the
hypotheses of this proposition. To see the details we can follow the
argument in the proof of Theorem 4.3 in [RARP1] (Proposition 4.2 plays the
role of Corollary 4.1 in [RARP1]). 1

THEOREM 4.2.  Let us consider 1<p<oc and w a p-admissible vectorial
measure in y. Let K; be a finite union of compact arcs contained in Q" for
0<j<k. Then:

(@) If (y,u) € 6o there exists a positive constant ¢; = ¢|(Ky, ..., Ki_1)
such that

k=1
Cl1 Z ||g(]+l)”L'(K/) < HgHWk-l’(y,M)? Vg € Vk’p(%ﬂ)-
j=0

(b) If (y,u) € € there exists a positive constant ¢; = ¢2(Ko, ..., Ki—1)
such that for every g € V&P (y, u), there exists go € VP (y,u), (the same
function as in Theorem 4.1), with

llgo = gllweo = 0,

k—1
j+1
@ 198 21y < lgollwirrig = gl weogo-
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Furthermore, if g9, fo, are, respectively, these representatives of g,f, we have
with the same constant ¢

k—1
i+1 j+1
D> 198 = 1" Nl iy <Ng =Sl wiogy-
J=

The representatives gy, fo are the same as in Theorem 4.1.

Proof. We only prove part (b) since (a) is simpler. Given a function
g € VEP(y, ), let us choose go as in Theorem 4.1(b). Fix 0<j<k. Since
K_,EQm, given any point z € Kj, there exist an arc J. and a completion w* of
w with z € J: and Wi, € B,(J:). The compactness of K; gives that there
exists a finite set of points zy,...,z; with K;&J., U---U J.,.

If we define w¥, | = Zle Wi s., the second inequality in Theorem 4.1(b)
gives

G+1)
cllgo ||U(1<,,wj+])<||90||Wk-ﬁ(~,,u)v

and this finishes the proof of the first inequality, since w},; € B,(K;). The
proof of the second one is similar. 1

A simple modification in the proof of Theorem 4.2 gives Corollary 4.1.
We use the symbol W =?(y, ) to denote the Sobolev space W =" (y, (u,,,

o He):

COROLLARY 4.1.  Let us consider 1<p<oo and p=(uy,..., 1) a

p-admissible vectorial measure in y. For some 0<m<k, assume that (y, (W,

s 1)) €6o. Let K be a finite union of compact intervals contained in Q=1
Then there exists a positive constant ¢y = ¢|(K) such that

ClHgHLl(K)<||g||Wk—m-p(y,,1), Vg € Vkim’p(“/a/l)-

5. COMPLETENESS

THEOREM 5.1.  Let us consider 1<p<oo and p= (uy,...,l) a p-
admissible vectorial measure in y with (y,u) € €. Then the Sobolev space
whP (y, 1) is complete.

Proof. Let {f,} be a Cauchy sequence in W*?(y, u). For each n, let us
choose a representative of the class of f, € W*#(y, u) (which we also denote
by f,) as in Theorems 4.1 and 4.2. Therefore, for each 0<j<k, {f,,(/)} isa
Cauchy sequence in L”(y, ;) and it converges to a function g; € L7(y, 1;).
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We only need to prove that, for each 0<j<k — 1, g; is (perhaps modified in
a set of zero y -measure) a function belongmg to ACL.(QY) such that
g = gj+1 in QU

Let us consider any compact arc K< Q") (K can be the whole curve y if
QY) =y and it is a compact curve). By Theorems 4.1(b) and 4.2(b) we know
that there exists a positive constant ¢ such that for every n,m € N

k
1D =1 ey LT = gy <€ 0 1A = I -
i=0

As {f},m} C C(K), there exists a function /; € C(K) such that

elLA = Al xy Z 172" = 9l 1y

Since we can take as K any compact arc contained in Q) we obtain that
the function /4; can be extended to QY and we have in fact h; € C(QY). Tt is
obvious that g; = /; in QU (except for at most a set of zero p-measure),
since ,,( Y converges to g; in the norm of L”(y, i;) and to A; uniformly on each
compact arc K< QY. Therefore we can assume that gi€C Q).

Let us see now that gj = gj+1 in K . We have for z,zy € K that

1) =10 + [ 0 dc

The uniform convergence of f,,(’ )in K and the L'-convergence of f,,(/ Din K
give that

9i(z) = g;(z0) Jr/ gi+1(0)dC. 1

20

DEFINITION 5.1. A vectorial measure g = (uq,..., ;) in the complex
plane belongs to (ESD) extended sequentially dominated if there exists a
positive constant ¢ such that w; ; <cp; for 0<j<k.

Remark. 1If p € ESD is a p-admissible vectorial measure in a curve y,
then (y, 1) € o (see Remark 4 to Definition 4.2). A vectorial measure p is
sequentially dominated if and only if 4 € ESD and #supp uy = oo. If u €
ESD, 0 is the unique polynomial ¢ with ||g|[yw,c,) = 0 if and only if #

supp py = 00

THEOREM 5.2. Let us consider 1<p<oo, y:I — C a curve with y €
W =1oo(I), and w = (g, - - -, ) a p-admissible vectorial measure in y with
(y,u) € €. Let us assume that u € ESD if k=2. Then there exists a
p-admissible vectorial measure u* in I, with (I,p*) € €, and p* € ESD if
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k=2, such that the spaces W*P(I,u*) and W*P(y, i) are isomorphic as
normed spaces. Furthermore, p* is finite (respectively, locally finite) if u is
finite (respectively, locally finite).

Proof. Given the measure y; in y we define the measure u]’-" in I by
15 (A) = p;(y(4)), for all Borel set 4 <1. This measure is well defined since y
is injective (if y is a closed curve and its domain is I = [a, b] we can consider
y:[a,b) — C in order to define u*) Wlth this deﬁnltlon we have that, for
any function f € L'( y,,uj ff d,u/ =[fiy *(t). We define now
w =g, i), Tt s clear that u* € ESD 1f k>2 and p* is finite
(respectively, locally finite) if u is finite (respectively, locally finite). We have
wi=1y'[(wjo7); if y is a closed curve and I = [a,b], without loss of
generality we can also assume that y(a) = y(b) is a (k — 1)-regular point;
then we have that the set of j-regular points for g, is the image by 7y of the j-
regular points for *. This fact gives that p* is p-admissible and (I, u*) € €.
It is natural to define the linear mapping @ : WX (y, u) — W*?(I, i*) given
by &(f ) =f-7y. We shall see that @ is an isomorphism.

Observe that @(f)" = f’(7)y’ and that

=3 r0mey0)  for 1sj<k,

i=1

where Q;; is a differential operator of degree less than or equal to j. As
9 e L*(I) for 1<i<k, we obtain

J

12 ) gy <€ D PO e

i=
J ) J )
=¢ Z ||f(l)||U(wj)<c Z ”f(l)”L”(v‘u,-)
i=1 =1
< c||f.||W"’~1’(",',u)7
since p € ESD if k>2. That is to say ||@(f)| |z e </l o -

Since (y,u) € € and (I, u*) € €, the other inequality is a consequence of
the open mapping theorem in Banach spaces. I

6. DENSITY

We do not have a density theorem as general as Theorem 5.1, but
Theorem 6.1 covers many important cases. We begin with the following
definitions.
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DEeFINITION 6.1.  Consider 1 <p<oo, a compact curve y and a vectorial
measure u = (4, ..., 1) in y. We say that p is of type 1 if it is finite and
p-admissible in y and wi € B, (7).

DEeFINITION 6.2. Consider 1<p<o0, a non-closed compact curve y =
[z1, z2] and a vectorial measure p = (y, ..., ;) in y. We say that u is of type
2 if it is finite and strongly p-admissible in y and there exist points along the
curve z; <{; <{, <3< {4 <z and integers ki, kr >0 such that

(1) Wi € BP([C])C4])7

(2) if z1<{, then w; is comparable to a non-decreasing weight in
[217 CZ]? for kl <]<k7

(3) if {4<z,, then w; is comparable to a non-increasing weight in
[C37 22]7 for k2 <]<k7

(4) zy is right (k; — 1)-regular if k; > 0 and z; is left (k, — 1)-regular if
ky > 0.

DEeFINITION 6.3. Consider 1 <p<oo, a compact curve y and a vectorial
measure g = (g, - - ., ) in p. We say that u is of type 3 if it is finite and
p-admissible in y and there exist zy € y, an open neighbourhood V' of zj in y,
an integer 0<r<k and a positive constant ¢ such that

(1) dwy1(z2)<clz = 20/ dw(z) in V, for r<j<k,

2) wi € B,(\{z0}),
(3) if r >0, zg is (r — 1)-regular.
Remark. Condition (1) means that w;, is absolutely continuous with
respect to y; on V and its Radon-Nikodym derivative is less than or equal
to ¢|z — zo|.

DEerFINITION 6.4. Consider 1 <p<oo, a compact curve y and a vectorial
measure p = (L, .., 1) in . We say that u is of type 4 if it is finite and
p-admissible in y and there exist zy € 9, an open neighbourhood V of zp in y
and a positive constant ¢ such that

(1) if p > 1, wi(z) <c|z — zo[’ " for almost every z € V;if p = 1, wy can
be modified in a set of zero length in such a way that lim,_,,, wi(z) =0,

2) wi € B,(7\{z0}),

(3) if £ > 1, zg is (k — 2)-regular.

DEeFINITION 6.5. Consider 1<p<oo, a non-closed compact curve
y = [z1,22] and a vectorial measure u = (pg, ..., 1) in y. We say that u is
of type 5 if it is finite and p-admissible in y and verifies

(1) wi € By((z1,22)),
(2) if k> 1, z; is right (k — 2)-regular and z, is left (k — 2)-regular.
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Remark. We want to remark that the types of measures in [RARP2] and
here do not coincide.

LEMMA 6.1. Let us consider 1 <p<oo and a finite p-admissible vectorial
measure u of type i (1<i<5). Then there exists a finite vectorial p-admissible
measure (' of type i such that ' € ESD and u' > pu.

Proof. It is easy to check that the measure u' = (y, ..., ) with p; =
1 + - + w verifies the required conditions. 1

LEMMA 6.2. Let us consider 1<p<oo, ¢ >0, y:1 — C a curve with ¢
<|Y|<candy € WK1(I), and a vectorial measure p of type i (1<i<5),
with p € ESD. Then the vectorial measure y* which appears in the statement
of Theorem 5.2 is of type i.

Proof. It is an immediate consequence of the following facts: wj‘?‘ =

-1 _ .
10w 0 9)s OV om0 -y for all are JEI, y is a

bijection between the j-regular sets in W ?(I, u*) and W*?(y, u), and
[v(1) = v(to)[ < clt —1o]. W

THEOREM 6.1. Let us consider 1<p<oo, ¢ >0 and p= (uy,..., ) a
p-admissible vectorial measure in a compact curve y: I — C. Let us assume
that ¢ ' <|y'|<c and y € WK12°(I). If wis a measure of type 1,2,3,4 or 5,
then ACY(I) is dense in the Sobolev space W P(y, ). Furthermore, if y €
C*(I), then C>(y) is dense in W& (y, ).

Proof. Assume first that y is not a closed curve. We can replace
the measure u by a greater measure, since then the theorem is more
difficult. Therefore, by Lemmas 6.1 and 6.2, we can assume u € ESD, and
so the measure y* which appears in the statement of Theorem 5.2 is of
type i.

We can deduce that C*(R) is dense in W*?(I,i*); this is an
immediate consequence of [RARP2, Theorem 4.1] if p is a measure
of type 1, 2 or 4. On the other hand, if u is of type 3 (respectively, 5)
this fact follows from [R3, Theorem 3.4] (respectively, [R3, Theorem 3.3]).
Recall that the types of measures in [RARP2] and here do not
coincide.

Therefore ACF(I) is dense in W*?(I,u*). By Theorem 5.2 and
Lemma 2.7, ACX(y) is dense in W&?(y,u). If y € C®(I), Theorem 5.2
gives that C*(y) is dense in W*”(y, u). This finishes the proof in this
case.

If y is closed the proof is similar but it is necessary to reformulate slightly
the last arguments. As an example we deal now with type 1.
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Let f € V57 (y, u). Let g be a continuous function in y which approximates
/% in the L7(y, ;) norm. Fix zy € y and consider the function

3 J—1 _ (Z _z )] z (Z _ C)kfl
h(z) = /;f(/)(zo)ToJr /ZO Q(C)WCK

We have, for 0<j <k, that
||f(j) - h(j)HU(;x,uj) <C||f(k) - gHL‘(y) <C||f(k> - g||u’(~,~,,lk),
and then
1 = hllwrogg <AlSY = gllpyy — with he ACK(y).

THEOREM 6.2. Let us consider 1<p<oo, ¢ >0 and p= (uy,..., ) a
p-admissible vectorial measure in a non-closed compact curve y : I — C. Let
us assume that ¢ <|y'|<c and y € W1°(I). If u is a measure of type
1,2,3,4 or 5, then P is dense in the Sobolev space W*?(y, ).

Proof. Let fy € V¥?(y, u). By Theorem 6.1 we can approximate f by a
function /" € AC¥(y). Let g be a continuous function approximating /*) in
the I7(y, 1) and the L'(y) norms (see [R3, Lemma 3.1]). Since y is non-
closed, we can choose a polynomial ¢ approximating ¢ in L*°(y) (and
therefore in the L”(y,u) and the L'(y) norms). By fixing zy €y and
considering the function

i Ly B .kt
0) = 1 e S5 a0

we can finish the proof as above.

7. DENSITY IN ANALYTIC CLOSED CURVES
We deal first with the case of the unit circle OD.
LEMMA 7.1.  Let us consider 1<p<oo, m € Z" and p a finite scalar
measure in OD. Then the polynomials P are dense in L' (0D, u) if and only if
1/2™ belongs to the closure of P in L (0D, p).

Proof. We prove first the result for m = 1. The “only if” direction is
immediate. In order to prove the non-trivial implication, assume that 1/z
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belongs to the closure of P. Then we have, for any r,n € Z7,

dist(1/z, P,) = min/ |27t —(ap + a1z + -+ + a,2")P du(z)
oD

a;eC
= min/ 27" — (a2 "+ a1 4 - 4 a, TP duz)
4€C Jop
=dist(z ", span{z' ", 227", ... TP,
This fact and an induction argument in r give that 1/z" belongs to the
closure of P in L7(dD, p), for every r € Z™. Since any function in L7 (9D, u)
can be approximated by continuous functions in the norm of L? (9D, u), and
that any continuous function can be approximated uniformly in dD by
linear combinations of integer powers of z, we have that the polynomials are
dense in L7 (0D, p).

We prove now that 1/z” belongs to the closure of P if and only if 1/z
belongs to the closure of P. The last argument gives that 1/z" belongs to the
closure of P if 1/z does. Assume now that 1/z" belongs to the closure of P.
Choose p, € P with ||p, —1/2"||1,(,) — 0. Then

12" o = 1/2ll 1oy = 11w = 1/2" |15y — O

so 1/z belongs to the closure of P, and this finishes the proof of the
lemma. &

PROPOSITION 7.1.  Let us consider 1 <p<oo and p = (lg, - - -, ) a finite
p-admissible vectorial measure in OD. If the polynomials are dense in W*?(
OD, ), then they are dense in L (0D, ;) for any 0<j<k.

Proof. Fix 0<j<k. The function 1/z can be approximated by
polynomials in W*? (9D, ). Then the function 1/2*! can be approximated
by polynomials in 17(9D, y;). Lemma 7.1 gives now the result. 1

DEFINITION 7.1. A scalar measure p in an analytic closed curve y with
absolutely continuous part w verifies the Szegd condition if

/log w(z)|dz| > —oc.

Y

The following theorem of Kolmogorov—Krein—-Szego is well known (see,
e.g. [G, pp. 135-137)).

THEOREM A. Let us consider 1 <p<oo and a finite scalar measure u in
OD. Then the polynomials are dense in LP(OD, p) if and only if u does not
verify the Szegé condition.
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We have the following consequence of Proposition 7.1 and Theorem A.

COROLLARY 7.1.  Let us consider 1 <p<oo and p = (u,..., 1) a finite
p-admissible vectorial measure in OD. If for some 0<j<k the measure

; verifies the Szegé condition, then the polynomials are not dense in
Whr (9D, ).

Remark. One could think that the converse of Corollary 7.1 is true.
However, if we consider 4 := {z € D :|argz|<n/2}, B:=={z € dD :|arg
2|2 n/4) (with argz € (~m,7]), dpg(z) = 74()|dz] and dpuy(2) = 75(2)ld],
then p, pt; do not verify the Szegd condition and the polynomials are not
dense in W!? (0D, u), as the following results, which are improvements of
Corollary 7.1, show.

THEOREM 7.1. Let us consider 1<p<oo, p=(yg,...,1,) a finite
p-admissible vectorial measure in 0D with (0D, u) € €y and @ a finite
sum of completions of w. If for some 0<j<k the measure Ti; verifies
the Szegd condition, then the polynomials are not dense in
WP (0D, ).

Proof. Part (a) of Theorem 4.1 and the fact m>pu give that the
polynomials are dense in W*? (9D, u) if and only if they are dense in W*?
(0D, ). Now Corollary 7.1 gives the result. 1

COROLLARY 7.2. Let us consider 1<p<oo, a fixed integer 0<j<k,
1= (Ko, ---, 1) a finite p-admissible vectorial measure in 9D with (0D, u) €
€y and K a finite union of compact arcs with K<l If the measure y;
verifies

/ log w;j(z)|dz| > —o0,
OD\K

then the polynomials are not dense in W*?(9D, p).

Proof. Theorem 4.1 guarantees that we can take a measure @, as in
Theorem 7.1, such that w;(z) >w;(z) + yx(z). Then we only need to apply
Theorem 7.1. 1

As positive results on density of polynomials in D we have
already proved the theorems in Section 6 when 4, the union of the supports
of y;, is not equal to 9D (it is enough to consider a non-closed curve y with
A<y).

We deal now with general analytic closed curves.
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PROPOSITION 7.2.  Let us consider 1 <p<oo and p = (tg, - - -, ) a finite
p-admissible vectorial measure in an analytic closed curve y. Let us assume
that p € ESD if k=2. If for some 0<j<k the measure y; verifies the Szego
condition, then the polynomials are not dense in W*?(y, ).

Proof. Let us consider a conformal map F between D and the simply
connected domain E bounded by 7. Since y is analytic, we can extend F to
dD with F : D — E biholomorphic.

Given the measure y; in y we define the measure i in 9D by 1f(4) =
1;(F(A)), for all Borel set 4<ID. Since u € ESD if k>2, the argument in
the proof of Theorem 5.2 gives that W ?(OD,u*) and W*?(y, u) are
isomorphic as normed spaces. By Mergelyan and Weierstrass theorems the
polynomials are dense in W*”(y, u) if and only if the holomorphic functions
in E are dense in W*?(y, u). Therefore P is dense in W (9D, u*) if and only
it is dense in W*”(y, u). Since wi = [F'|(wjo F) and there is a positive
constant ¢ with ¢~'<|F'|<c¢ in 9D, y; verifies the Szegd condition if and
only if ,u]’? does. These facts and Corollary 7.1 give the result. 1

The same argument used in the proof of Proposition 7.2 gives the
following generalization of the theorem of Kolmogorov—Helson—Szego.

COROLLARY 7.3. Let us consider 1 <p<oo and a finite scalar measure u
in an analytic closed curve y. Then the polynomials are dense in L? (y, 1) if and
only if i does not verify the Szegd condition.

The same proof of Theorem 7.1 and Corollary 7.2 (using now Proposition
7.2) gives the following results.

THEOREM 7.2. Let us consider 1<p<oo,u= (uy,...,1) a finite p-
admissible vectorial measure in an analytic closed curve y, with (y,u) € €y
and i a finite sum of completions of . Let us assume that u € ESD if k=2. If
Jor some 0<j<k the measure i; verifies the Szegé condition, then the
polynomials are not dense in W= (y, ).

THEOREM 7.3. Let us consider 1<p<oo, a fixed integer 0<j<k,
w= (o, - -, 1) a finite p-admissible vectorial measure in an analytic closed
curve y, with (p,p) € €y and K a finite union of compact arcs with K<),
Let us assume that p € ESD if k=2. If the measure ; verifies

/ log w;(z)|dz| > —o0,
\K ‘

7

then the polynomials are not dense in WP (y, 1).
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8. MULTIPLICATION OPERATOR

First of all, some remarks about the definition of the multiplication
operator. In this section we only consider measures such that
every polynomial has finite Sobolev norm. Recall that when
every polynomial has finite W*?(E, u)-norm, we denote by P*"(E,pu)
the completion of P with that norm. We start with a definition which
has sense for measures defined in arbitrary Borel sets (not necessarily
curves).

DerINITION 8.1. If pis a vectorial measure in the Borel set E < C, we say
that the multiplication operator is well defined in P*?(E, u) if given any
sequence {s,} of polynomials converging to 0 in W*?(E, u), then {zs,} also
converges to 0 in W*?(E, u). In this case, if {g,} € P*?(E,u), we define
M({q,}) = {zq,}. If we choose another Cauchy sequence {r,} representing
the same element in P*?(E, u) (i.e. {g, — r,} converges to 0 in W*?(E, p)),
then {zq,} and {zr,} represent the same element in P*”(E, u) (since {z(q, —
r,)} converges to 0 in Wk?(E, p)).

We can also think of another definition which is as natural in the case of
curves:

DEerFINITION 8.2. If u is a p-admissible vectorial measure in y (and hence
WP (y, 1) is a space of classes of functions), we say that the multiplication
operator is well defined in W*?(y, i) if given any function h € V¥?(y, u)
with |||y, ) =0, we have [|zh[ s, ) = 0. In this case, if [f] is an
equivalence class in W*?(y, ), we define M([f]) = [zf]. If we choose
another representative g of [f] (i.e. ||/ — gl[ s (, ) = 0) we have [zf] = [zg],
since ||z(/ = )|l pro(y ) = O

Although both definitions are natural, it is possible for a p-admissible
measure u with W*?(y, u) = PAP(y, u) that M is well defined in W*?(y, u)
and not well defined in P*?(y,u) (see Lemma 8.1 and Theorem 8.3).
The following lemma characterizes the spaces PFP(E, u) with M well
defined.

LeEMMA 8.1.  Let us consider 1<p<oo and u= (y,...,W) a vectorial
measure in a Borel set ESC. The following facts are equivalent:

(1) The multiplication operator is well defined in P*?(E, p).
(2) The multiplication operator is bounded in P*?(E, ).
(3) There exists a positive constant ¢ such that

zal o < clldllwerg,y — for every g € P.
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Remark. When we say that the multiplication operator is bounded in
PFP(E, 1), we assume implicitly that it is well defined in P¥?(E, u), since
otherwise the boundedness has no sense.

Proof. 1Tt is clear that condition (3) implies (1). If we assume (1), we have
that the multiplication operator M is continuous in 0 € (P, || - ||y (g ,)-
Since M is a linear operator in the normed space (P, || - ||yt (g, ), We know
that M is bounded in (P, [ - || s (g ), Which gives (3).

We now show the equivalence between (2) and (3). Let us consider an
clement o € P*?(E, ). This element o is an equivalence class of Cauchy
sequences of polynomials under the norm in W*?(E, u). Assume that a
Cauchy sequence of polynomials {g,} represents o. The norm of o is defined
as |[o|| pro(g ) = Moo |gnl [ ts (- Which obviously does not depend on

the representative. Hence, condition (2) is equivalent to
i {120l o g <€ T 1l

for every Cauchy sequence of polynomials {¢,}. Now the equivalence
between (2) and (3) is clear. 1§

LEmMMA 8.2. Let us consider 1<p<oo and u= (uy,...,1) a finite

vectorial measure in a compact set E. Then, the multiplication operator is
bounded in P*?(E, ) if and only if there exists a positive constant ¢ such that

||q(]71) ‘ |L!'(E,u/-) < C‘ |q| | Wk (E,u)
for every 1<j<k and q € P.
Proof. If M is bounded in P*?(E, i), we have that
10 1r 1) <IN gl o
for every 1<j<k and ¢ € P. Since

10Nl iy = |Iz¢? +jg" ™!

>||U(E7uj) = ||q(jfl>||u(E7uj) - K||qo)||U(E,ﬂj),
with K = max{|z|:z € E}, we have
19110 S KNG W n(g + 1M 1l o0 < K+ [MID] G peo e

for every 1<j<k and ¢ € P.
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We now prove the converse implication. Observe that
1) Ny = 11267 478" N o) <INa N o) + K9V i)
with K as before, for every 1<j<k and ¢ € P. Then

1G5y < 27 Plla 11 5y + K2 N 5,)

<2 POl + KN4 )
for every 1 <j<k and g € P (if j = 0 the inequality is trivial). Consequently
24l iy <27 Rl + KNl i )
and
12l <207+ KPP gl o

for every g € P. Hence, Lemma 8.1 proves that M is bounded in
PP (E, ). N

In the following we often use the next result. We omit the proof since it is
elementary.

LEMMA 8.3. Let us consider 1<p<oo and p= (Ugy,...,l), W =
(U5 - - - » W) vectorial measures in a Borel set E<SC. If the Sobolev norms in
WP (E, u) and W5 (E, i) are comparable on P, then:

(1) POO(E, ) = PY2(E, o).
(2) M is bounded in P (E, p) if and only if it is bounded in P*?(E, ).

THEOREM 8.1. Let us consider 1<p<oo and p= (uy,...,l) a finite
vectorial measure in a compact set E. Then, the multiplication operator is
bounded in P*?(E, i) if and only if there exists a vectorial measure ' € ESD
such that the Sobolev norms in W*?(E, u) and W*?(E, i) are comparable on
P. Furthermore, we can choose ' = (K, ..., ) with i = j; + . + - +

M-

Remark. In order to apply Theorem 8.1, if £ = y is a curve, the best way
to deduce that || - ||y, ) and || - [y, 0y are equivalent is to prove that '
can be obtained by a finite number of completions of u (in that case we can
use Theorem 4.1).
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Proof. Assume that there exists a vectorial measure ¢ € ESD such that
the Sobolev norms in W*?(E, u) and W*?(E, ') are comparable on P. By
Lemmas 8.2 and 8.3 it is enough to show

1197 ) < lltll oz (8.1)
for every 1<j<k and ¢ € P. The hypothesis ¢/ € ESD gives

14"~

-1
L (E.) <c||q(l )| U’(E,,u]’.il) <C||q||W/\’-l'(E,;U)a
and then we have (8.1).
Assume now that M is bounded in P*?(E,u) and let us consider the

vectorial measures pu, u', ..., k=1, i¥ defined by

) k
W= if j<i<k
I=i

Observe that % =y and u° is the measure i/ defined at the end of the
statement of Theorem 8.1. These vectorial measures verify, for 0 <i<k and
0<j<k,

W= i i -1, (8.2)

Mj 5::“5“‘#/71 :P‘;‘Fﬂj—]- (8.3)

Therefore we have ||q||yir g w) <4l wrop 1), for every g€ P and
I1<j<k.

Since u° € ESD it is enough to show that the Sobolev norms in W*”(E,
1) and W*?(E u°) are comparable on P. We prove this by showing for
1<j<k that the Sobolev norms in W*?(E, /) and W*?(E /=) are
comparable on P and M is bounded in P*?(E,;/~"). We prove this last
statement by reverse induction on j. Assume that the induction hypothesis
holds for j 4 1. Then we have that M is bounded in P?(E, /). Lemma 8.2
gives that

195 gty < llal o
for every g € P. This inequality and (8.3) show

G=Dyp P G=DyPp P
197 W gy S Nallioe oy + 167 M gy S+ Dllallpeoe )
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for every ¢ € P. This fact and (8.2) show that the Sobolev norms in
W (E, Wy and W*?(E, #~") are comparable on P. Then Lemma 8.3 shows
that M is bounded in P*?(E, /=), since it is bounded in P*?(E, /). The
proof of the case j = k is similar. This finishes the induction argument and
the proof of Theorem 8.1. 1§

If we consider the case of a curve E =y, we have the following results.

THEOREM 8.2. Let us consider 1<p<oo and a p-admissible vectorial
measure piny. If wis of type 1,2 or 3, and the multiplication operator is well
defined in W*?(y, ), then it is bounded in P*P(y, ).

Remark. 1In this situation Theorem 6.2 gives PX?(y, u) = Wk#(y, u) if
7 : I — Cis a non-closed curve with ¢! <|y/|<cand y € W*=1°°(I). In this
case the multiplication operator is bounded in W*?(y, ).

Obviously, the multiplication operator M is well defined in W*?(y, u) if
and only if it is well defined in V*?(y, u) (i.e. zf € V5P (y, ) for every f €
VA (y, 1)) and. [|2f | ey, = O for every f € VE2(y, ) with || /1y,

0. This second condition can be written as M (A (y, u)) S A (y, 1.

THEOREM 8.3. Let us consider 1<p<oo and a p-admissible vectorial
measure [ in y. Assume that the multiplication operator M is well defined in
Vk?(y, ). Then M is well-defined in W*?(y, u) if and only if A (y, u) = {0}.

Proof. Suppose first that #'(y,u) = {0}. Then, if /' € V*?(y,u) with
Sl wro(y ) = 0 we have || f][ a4, 0)) = 0- Consequently f{g0 = 0 and so

2/ o, nal, = 0. On the other hand we also have || 11|, ,,) = 0, and so
f(z)=0 for ,uo -almost every z € y. Then zf(z) = 0 for y,-almost every z € y

and ||zf11,(, ) = 0- Observe that y; is concentrated in €; U Q"= for
1<j<k. We deduce from these facts that
127 1509 S T WD )+ 12 Wi ) = O

and therefore the multiplication operator is well defined in W& (y, u).
On the converse, let us suppose that there is ' € V% (y, u) such that

||f||W’°-l’(%/ﬂ\Q<0>) =0,

but f is not identically zero in Q). We know that there exists an arc y, < Q"
such that /|, #0, and therefore there is another arc y; =7, such that yl cQ
for some 1 <i<k and f1, #0. If g belongs to #'(y, 1), we have that gV (z) =

0 for almost every z € Q,, and therefore that ¢~ is constant in each
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connected component of ;. Then g|3,1 € P;_1. Let us choose now h €
A (y, ) such that deg h|yl >deg g|yl for all g € A (y, u) (we have degh ,, =0
since the function f is not identically zero in y,). Then, deg zh|),l > deg h|“/1;
therefore zh ¢ A (y, u) and M is not well defined. 1§

Proof of Theorem 8.2. We divide this proof into three parts; each of
them will be devoted to each type of measure. Remember that in our
hypotheses we always have #(y, u) = {0} by Theorem 8.3. Therefore (y, )
€ %, since QO\(Q; U--- U Q) has at most two points (see Remark 1 after
Definition 4.2).

Measures of type 1. By Theorem 4.1 we have directly
/YN ) < S ey €l oy

for all f € Vk#(y, u) and 1</ <k, since (y, ) € €. Now Lemma 8.2 gives
the conclusion.

Measures of type 2. A computation (using Muckenhoupt inequality)
gives that

C||f(/.71>||LI'([:1,§2],;Lj) < Hf(])|

IS R VAR (6]
for k1 <j<k. Then Theorem 4.1 gives

||fuil>||y([;l,§2},uj) <c||f‘|Wk-p(y,ﬂ)- (8.4)
If k; > 1, again by Theorem 4.1, we have

Y ety S NSV ez S N o

for all £ € V¥?(y,u) and 1<j<kj, since z; is right (k; — 1)-regular (and
then [zl,Cz]gQ““_l)). Therefore (8.4) is true for all f € V*?(y,u) and 1<
<k. The arc [{3,z3] is treated in a symmetric way and we obtain an

inequality similar to (8.4). The arc [{,,(3] needs the same argument as
measures of type 1.

Measures of type 3. Condition (1) of measures of type 3 gives

79 Moy <A Mg



WEIGHTED SOBOLEV SPACES ON CURVES 83

for r<j<k.If r > 0, Theorem 4.1 gives

1Y)

Lr(V ) <C||f<iil>||Loc(V) <||f]| Wk (y.11)

for 1<j<r. Consequently, we have

1Y vy < €l oy

for 1 <j<k. The arc y\ V needs the same argument as measures of type 1. 1

THEOREM 8.4.  Let us consider 1 < p <oo and a finite p-admissible vectorial
measure [ in a compact curve y. Assume that (y, ) € 6o and that for each
1<j<k we have ,uj(y\ (Ji-1UKj_1)) =0, where K;_| is a finite union of
compact arcs contained in QU™Y) and Jj-1 is a Borel set with ;<cp;_y in J;_;.
Then the multiplication operator is bounded in PP (y, u).

Proof.  We have by ;(7) <oo and Theorem 4.1

19711y < llg" ™) < ellgllmiopg

for every 1 <j<k and g € W*?(y, ). The hypothesis on J;_; gives

. i1
||g</ )||U’(Jj—l-,/l/)<0||g(l )||U’(Jj—l,ﬂj—1)<C||g”Wk‘p(y*”).

These two inequalities imply

19712300 < €l o

for every 1<j<k and g € W*?(y, u). Lemma 8.2 finishes the proof. 1
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