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In this paper we present a definition of weighted Sobolev spaces on curves and find

general conditions under which the spaces are complete for non-closed compact

curves. We also prove the density of the polynomials in these spaces and, finally, we

find conditions under which the multiplication operator is bounded in the space of

polynomials. # 2002 Elsevier Science (USA)
1. INTRODUCTION

In very different areas of mathematics ranging from the partial differential
equations to approximation theory we find the topic of weighted Sobolev
spaces (see, e.g. [HKM,K,Ku,KO,KS, T]). Some particular cases of
Sobolev spaces with respect to measures instead of weights are studied in
[EL, ELW1, ELW2], where we find some examples of Sobolev spaces related
to ordinary differential equations and Sobolev orthogonal polynomials. We
presented a very deep study of Sobolev spaces with respect to general
measures in the real line in the papers [RARP1,RARP2,R1,R2,R3]. Now
we are interested in Sobolev spaces with respect to general measures along
curves in the complex plane.
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What we understand by a Sobolev norm on a Borel set EDC is the
following: for m ¼ ðm0; . . . ; mkÞ a vectorial Borel measure in E; the Sobolev
norm in W k;pðE; mÞ of a function f which is holomorphic on a
neighbourhood of E is defined by

jj f jjW k;pðE;mÞ :¼
Xk

j¼0

jj f ðjÞjjp
LpðE;mjÞ

 !1=p

:

Sobolev orthogonal polynomials on the unit circle and, more generally,
on curves is a topic of recent and increasing interest in approximation
theory; see, for example, [CM,FMP] (for the unit circle) and [BFM,M-F]
(for the case of Jordan curves). If E ¼ g is a simple and locally
absolutely continuous curve, it is clear that the set of holomorphic
functions whose norm in W k;pðg; mÞ is finite is not a Banach space except
when the support of m is finite. In order to obtain a complete space
we have to deal with functions which are not holomorphic. Consequently,
we need to define f ðjÞ when f is not holomorphic; the precise definition is
presented in Section 2. In this context we talk about a Sobolev norm
although it can be a seminorm; if this were the case we would take
equivalence classes, as usual. When every polynomial has finite W k;pðg; mÞ-
norm, we denote by Pk;pðg; mÞ the completion of polynomials with that
norm.

The zeroes of the Sobolev orthogonal polynomials with respect to the
scalar product in W k;2ðg; mÞ have been studied in [LP] in the case of a
segment on the real line. There it is proved that they are contained in the
disk fz 2 C : jzj42jjMjjg; where ðMf Þ ðxÞ ¼ xf ðxÞ is the multiplication
operator, considered in the space Pk;2ð½a; b	; mÞ: Consequently, the set of the
zeroes of the Sobolev orthogonal polynomials is bounded if the multi-
plication operator is bounded. The location of these zeroes allows one to
obtain results on the asymptotic behaviour of Sobolev orthogonal
polynomials (see [LP]). In [LP] they prove something more when they
consider only sequentially dominated measures, i.e. measures such that
#supp m0 ¼ 1 and dmj ¼ fj dmj�1 with fj bounded for 14j4k: They prove
that if m is a finite sequentially dominated measure in ½a; b	; then M is a
bounded operator on Pk;2ð½a; b	; mÞ: Recently, these results have been
improved for measures on compact sets in C (see [LPP]).

It is not difficult to see that the multiplication operator can also be
bounded when the vectorial measure is not sequentially dominated. In
Section 8 other conditions are given in order to have the boundedness of M

even on compact sets in C: In [R1] one of the authors obtains a
characterization of the boundedness of the operator M for measures in R:
Also, in Section 8 (see Theorem 8.1) this result is generalized for measures
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on compact sets in C; therefore this theorem is useful in the study of
orthogonal polynomials.

Though we do not have yet the definitions, we state the main theorems
here. The results are numbered according to the section where they are
proved. The first one gives a sufficient condition under which one obtains a
complete Sobolev space. The condition is a bit technical although it is very
general, so we prefer to state the theorem in a short version where this
condition is denoted by: ðg; mÞ 2 C: The definition of the class C is in Section
4, Definition 4.2. The theorem is as follows:

Theorem 5.1. Let us consider 14p41 and m ¼ ðm0; . . . ; mkÞ a

p-admissible vectorial measure in g with ðg; mÞ 2 C: Then the Sobolev space

W k;pðg; mÞ is complete.

Our main result on the density of polynomials in these spaces is Theorem
6.2. Now, the conditions we need are more restrictive than in Theorem 5.1,
but we have found five general types of measures for which it is true.
We simply name them by types 1, 2, 3, 4 and 5 and the definitions are in
Section 6. These measures include the most usual examples like Jacobi-type
weights (that are measures of type 2).

Theorem 6.2. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a

p-admissible vectorial measure in a non-closed compact curve g : I ! C:
Assume that g0 2 W k�1;1ðIÞ if k52: If m is a measure of type 1,2,3,4 or 5,
then P is dense in the Sobolev space W k;pðg; mÞ:

The last result we present here is Theorem 8.1. It gives a necessary
and sufficient condition so that the multiplication operator is bounded
on the space Pk;pðE; mÞ: The kind of measures that appear here,
extended sequentially dominated (ESD), is a generalization of
sequentially dominated measures. The definition is in Section 5,
Definition 5.1.

Theorem 8.1. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a finite

vectorial measure in a compact set E: Then, the multiplication operator is

bounded in Pk;pðE; mÞ if and only if there exists a vectorial measure m0 2 ESD
such that the Sobolev norms in W k;pðE; mÞ and W k;pðE; m0Þ are comparable on

P: Furthermore, we can choose m0 ¼ ðm00; . . . ; m0kÞ with m0j :¼ mj þ mjþ1 þ � � � þ
mk:

We also answer (see Theorem 4.1) to the following main question: when
the evaluation functional of f (or f ðjÞ) in a point is a bounded operator in
W k;pðg; mÞ?
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We also obtain results which partially generalize the classical result on
density of polynomials in Lp of the unit circle to the context of Sobolev
spaces (see Section 7).

Notation. We only consider simple curves which have a locally absolutely
continuous parametrization. In the paper k51 denotes a fixed natural
number; zi are points along a curve g � C: All the measures we consider are
Borel and positive, and all the weights are non-negative Borel measurable
functions. We can split mj as dmj ¼ dðmjÞs þ wj ds; where ðmjÞs is singular with
respect to the arc-length measure. wj is a weight on g and ds is the differential
of arc-length. We always use this terminology for the Radon–Nikodym
decomposition of mj: We identify a weight w on g with the measure w ds: We
denote by supp n the support of the measure n: If A is a Borel set in g; jAj;
wA; %AA; int A and #A denote, respectively, the length, the characteristic
function, the closure, the interior and the cardinality of A (the interior and
the closure of A are considered in the relative topology in g). P and Pn

denote, respectively, the set of all polynomials and the set of polynomials
with degree less than or equal to n:

If g : I ! C is a non-closed curve and t0 2 I ; by a right (respectively, left)
neighbourhood of z0 ¼ gðt0Þ in g we mean the image by g of ½t0; t0 þ e	
(respectively, ½t0 � e; t0	) for some e > 0: If t0 is the maximum (respectively,
minimum) of I we also have left (respectively, right) neighbourhoods of
gðt0Þ:

If g : I ! C is a closed curve and t0 2 I ; we can consider its periodic
extension g0 : R ! C; and define left and right neighbourhoods of gðt0Þ in a
similar way.

Finally, the constants (denoted by c or ci) in the formulae can change
from line to line and even in the same line.

The outline of the paper is as follows. Sections 2–4 contain the definitions
and some technical results we need. In Sections 5–7 we prove, respectively,
the results on completeness, density and density in closed curves. We prove
the results on the multiplication operator in Section 8.

2. DERIVATIVES ALONG CURVES

In this section we introduce a definition of derivative along a curve

extending the usual complex derivative, which will be crucial in the future.
As far as we know this concept is new. Recall that every curve is simple and
has a locally absolutely continuous parametrization.

Definition 2.1. (a) Let IDR be any interval and g : I ! C be a curve.
If z1; z2 are two distinct points of gðIÞ; we denote by

R z2
z1

gðzÞ dz the complex
integral of the function g along the arc of g joining z1 and z2; (which we
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denote by ½z1; z2	). We also can consider arcs where one or the two extremal
points are not included, as ðz1; z2Þ; ½z1; z2Þ or ðz1; z2	: If g is a closed curve we
take the arc of g joining z1 and z2 in the positive sense (according to the
parametrization).

(b) Let z0 be a fixed point in g: If g is compact we say that f 2 ACkðgÞ if f

can be written as

f ðzÞ ¼ qðzÞ þ
Z z

z0

hðzÞ ðz � zÞk�1

ðk � 1Þ! dz; ð2:1Þ

for some h 2 L1ðg; dsÞ and some polynomial q 2 Pk�1: If g is a closed curve

we require also the function h 2 L1ðg; dsÞ to verify
R
g hðzÞzi dz ¼ 0; for 04

i5k: When g is not compact, we say that f 2 ACk
locðgÞ if it can be split as in

(2.1) with h 2 L1
locðg; dsÞ:

(c) If f 2 ACk
locðgÞ and z0 2 g; we define its derivative f 0 along g as

f 0ðzÞ ¼ q0ðzÞ þ
Z z

z0

hðzÞ ðz � zÞk�2

ðk � 2Þ! dz;

where q0ðzÞ means the classical derivative of qðzÞ and
R z

z0
hðzÞ ðz � zÞ�1=

ð�1Þ! dz means hðzÞ:

Obviously, if g is a compact real interval, the space AC1ðgÞ is the set of
absolutely continuous functions in g: If g is a closed curve and f 2 ACkðgÞ;
we have

R
g hðzÞ ðz � zÞk�1

dz ¼ 0 for every z 2 g: This property is equivalent
to f ðjÞ being continuous in g for 04j5k; where f ðjÞ denotes the jth derivative
(according to the previous definition) of f :

We also notice that it is natural to define the derivative along g in this
way, since this is the ‘‘inverse’’ of integration:

Z z

z0

Z x

z0

hðzÞ ðx� zÞk�2

ðk � 2Þ! dz dx ¼
Z z

z0

Z z

z
hðzÞ ðx� zÞk�2

ðk � 2Þ! dx dz

¼
Z z

z0

hðzÞ ðx� zÞk�1

ðk � 1Þ!

" #x¼z

x¼z

dz

¼
Z z

z0

hðzÞ ðz � zÞk�1

ðk � 1Þ! dz:

Remark. Observe that if f is holomorphic in a region containing g; then
f 0 is the usual complex derivative of f at almost every point of g:
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Next, we prove that the definition of derivative is independent of the
representation of f we are using. Without loss of generality we can assume
that g0a0 almost everywhere since the definition of f 0 does not depend on
the parametrization. In fact, we shall see that the representation is unique.
Let us suppose that

f ðzÞ ¼ qðzÞ þ HkðzÞ ¼ rðzÞ þ GkðzÞ;

where qðzÞ and rðzÞ are polynomials with degree at most k � 1 and

HkðzÞ ¼
Z z

z0

hðzÞ ðz � zÞk�1

ðk � 1Þ! dz; GkðzÞ ¼
Z z

z0

gðzÞ ðz � zÞk�1

ðk � 1Þ! dz:

We want to see that q ¼ r and g ¼ h: Observe that

Z z

z0

ðg � hÞ ðzÞ ðz � zÞk�1

ðk � 1Þ! dz ¼ ðq � rÞ ðzÞ:

We proceed now by induction. Let us denote v ¼ g � h: For k ¼ 1; the
function VðzÞ ¼

R z

z0
vðzÞ dz is constant. It follows that

R t2
t1

vðgðtÞÞg0ðtÞ dt ¼ 0
for all t1; t2 2 I and this implies that vðgðtÞÞ ¼ 0 almost everywhere in I :
Therefore v ¼ 0; i.e., g ¼ h and q ¼ r:

Suppose now that

Z z

z0

vðzÞ ðz � zÞn

n!
dz

is a polynomial of degree at most n if and only if v ¼ 0; and consider the
function V 2 Pnþ1 defined by

VðzÞ ¼
Z z

z0

vðzÞ ðz � zÞnþ1

ðn þ 1Þ! dz:

If z0 ¼ gðt0Þ; z ¼ gðTÞ; then

WðTÞ :¼ VðgðTÞÞ ¼
Z T

t0

vðgðtÞÞ ðgðTÞ � gðtÞÞnþ1

ðn þ 1Þ! g0ðtÞ dt;

and therefore

V 0ðzÞg0ðTÞ ¼ W 0ðTÞ ¼
Z T

t0

vðgðtÞÞ ðgðTÞ � gðtÞÞn

n!
g0ðtÞg0ðTÞ dt:
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As g0a0 almost everywhere it follows that

V 0ðzÞ ¼
Z z

z0

vðzÞ ðz � zÞn

n!
dz

almost everywhere and so everywhere by continuity. Since V 0 2 Pn; the
induction hypothesis implies that v ¼ 0:

We need to prove now that this definition does not depend on the choice
of the point z0: To see this, let us denote

Hk;z0ðzÞ ¼
Z z

z0

hðzÞ ðz � zÞk�1

ðk � 1Þ! dz:

If z1 is another point in g; then

Hk;z0ðzÞ ¼
Z z1

z0

hðzÞ ðz � zÞk�1

ðk � 1Þ! dzþ
Z z

z1

hðzÞ ðz � zÞk�1

ðk � 1Þ! dz ¼ QkðzÞ þ Hk;z1ðzÞ;

ð2:2Þ

where Qk 2 Pk�1: Observe that (2.2) is true for a closed curve g since
then

R
g hðzÞ ðz � zÞk�1

dz ¼ 0 for every z 2 g: Consequently, H 0
k;z0

¼ Q0
kþ

H 0
z;k1

: Therefore, in what follows, we can assume that z0 is arbitrary but
fixed.

Finally, we need also to prove that our definition does not depend on k:
Indeed, we shall show that if f 2 ACk

locðgÞ then f 2 ACk�1
loc ðgÞ and the

corresponding definitions of derivative along g coincide. Let us suppose
that

f ðzÞ ¼ qðzÞ þ
Z z

z0

hðzÞ ðz � zÞk�1

ðk � 1Þ! dz and

f ðzÞ ¼ QðzÞ þ
Z z

z0

HðzÞ ðz � zÞk�2

ðk � 2Þ! dz;

with q 2 Pk�1 and Q 2 Pk�2: Then we can write qðzÞ ¼ q0ðzÞ þ ‘ðz � z0Þk�1

=ðk � 1Þ! with q0 2 Pk�2 and therefore, integrating by parts in the first
integral,

u ¼ ðz � zÞk�1

ðk � 1Þ! ; du ¼ �ðz � zÞk�2

ðk � 2Þ! dz;

dv ¼ hðzÞ dz; vðzÞ ¼
Z z

z0

hðxÞ dxþ ‘;
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and so

f ðzÞ ¼ q0ðzÞ þ ‘
ðz � z0Þk�1

ðk � 1Þ! þ ðz � zÞk�1

ðk � 1Þ! vðzÞ
" #z¼z

z¼z0

þ
Z z

z0

vðzÞðz � zÞk�2

ðk � 2Þ! dz

¼ q0ðzÞ þ
Z z

z0

vðzÞ ðz � zÞk�2

ðk � 2Þ! dz:

This means, by the unicity of the representation for the same k; that
q0 ¼ Q and v ¼ H: On the other hand, integrating by parts again, we have
that

f 0ðzÞ ¼ qðzÞ þ
Z z

z0

hðzÞðz � zÞk�1

ðk � 1Þ! dz

 !0

¼ q0
0ðzÞ þ ‘

ðz � z0Þk�2

ðk � 2Þ! þ
Z z

z0

hðzÞ ðz � zÞk�2

ðk � 2Þ! dz

¼ q0
0ðzÞ þ

Z z

z0

vðzÞ ðz � zÞk�3

ðk � 3Þ! dz

¼ QðzÞ þ
Z z

z0

HðzÞ ðz � zÞk�2

ðk � 2Þ! dz

 !0

:

The proof of the following three results is trivial.

Lemma 2.1. If f ; g 2 ACk
loc ðgÞ and a; b 2 C; then af þ bg 2 ACk

locðgÞ:

Lemma 2.2. f 2 ACk
locðgÞ if and only if the jth derivative f ðjÞ along g

belongs to AC
k�j
loc ðgÞ:

Lemma 2.3. If f 2 ACk
locðgÞ and z0 2 g; then

f ðzÞ ¼ qðzÞ þ
Z z

z0

hðzÞ ðz � zÞk�1

ðk � 1Þ! dz;

where qðzÞ is the ðk � 1Þth Taylor polynomial of f centered at z0; i.e.,

qðzÞ ¼
Xk�1

j¼0

f ðjÞðz0Þ
j!

ðz � z0Þj
and hðzÞ ¼ f ðkÞðzÞ:

Definition 2.2. We say that f 2 CkðgÞ if f 2 ACk
locðgÞ and f ðkÞ is

continuous in g:
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Next, we study Leibniz’ rule.

Lemma 2.4. If F ;G 2 AC1
locðgÞ then FG 2 AC1

locðgÞ and ðFGÞ0 ¼
F 0G þ FG0:

Proof. We can write

FðzÞ ¼ Fðz0Þ þ
Z z

z0

f ðzÞ dz; GðzÞ ¼ Gðz0Þ þ
Z z

z0

gðzÞ dz;

where f ; g 2 L1
locðg; dsÞ and z; z0 2 g; but,

FðzÞ GðzÞ ¼Fðz0Þ Gðz0Þ þ
Z z

z0

ðFðz0ÞgðzÞ þ Gðz0Þf ðzÞÞ dz

þ
Z z

z0

f ðzÞ dz
� 	 Z z

z0

gðzÞ dz
� 	

ð2:3Þ

and applying Fubini’s Theorem we get

Z z

z0

f ðxÞ dx
� 	 Z z

z0

gðzÞ dz
� 	

¼
Z z

z0

Z z

z0

f ðxÞ gðzÞ dx dz

¼
Z z

z0

Z x

z0

f ðxÞ gðzÞ dz dx

þ
Z z

z0

Z z

x
f ðxÞ gðzÞ dz dx

¼
Z z

z0

Z x

z0

f ðxÞ gðzÞ dz dx

þ
Z z

z0

Z z

z0

f ðxÞ gðzÞ dx dz

¼
Z z

z0

Z x

z0

f ðxÞ gðzÞ dz dx

þ
Z z

z0

Z z

z0

f ðxÞ gðzÞ dx dz

¼
Z z

z0

f ðxÞ ðGðxÞ � Gðz0ÞÞ dx

þ
Z z

z0

gðzÞ ðFðzÞ � Fðz0ÞÞ dz:
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This and (2.3) give

FðzÞ GðzÞ ¼ Fðz0Þ Gðz0Þ þ
Z z

z0

ðFðzÞ gðzÞ þ GðzÞf ðzÞÞ dz;

with Fg þ Gf 2 L1
locðg; dsÞ; i.e., FG 2 AC1

locðgÞ and ðFGÞ0 ¼ F 0G þ FG0

almost everywhere in g: ]

Proceeding inductively we obtain that if F ;G 2 ACk
locðgÞ then ðFGÞðk�1Þ 2

ACk
locðgÞ which implies that FG 2 ACk

locðgÞ; that is

Lemma 2.5. Let F ;G 2 ACk
locðgÞ: Then FG 2 ACk

locðgÞ and verifies

Leibniz’ rule, i.e.,

ðFGÞðkÞ ¼
Xk

j¼0

k

j

 !
F ðjÞGðk�jÞ:

Lemma 2.6. Let us consider g : I ! C with g0a0 almost everywhere.

Then f 2 AC1
locðgÞ if and only if f 8 g 2 AC1

locðIÞ: Furthermore, if f 2 AC1
locðgÞ

we have

d

dt
f ðgðtÞÞ ¼ f 0ðgðtÞÞg0ðtÞ for almost every t 2 I :

Proof. If f 2 AC1
locðgÞ we obtain directly f 8 g 2 AClocðIÞ: Fix now t0 2

I : If f 8 g 2 AClocðIÞ then dð f 8 gÞ=dt 2 L1
locðIÞ and so

f ðgðtÞÞ ¼ f ðgðt0ÞÞ þ
Z t

t0

1

g0ðtÞ
d

dt
ðf ðgðtÞÞÞg0ðtÞ dt;

for every t 2 I : Therefore, for every z 2 g;

f ðzÞ ¼ f ðz0Þ þ
Z z

z0

hðzÞ dz; with hðzÞ ¼ 1

g0ðtÞ
d

dt
ðf ðgðtÞÞÞ

� 	
ðg�1ðzÞÞ: ]

Finally, let us introduce our last concept on derivatives:

Definition 2.3. We define the D-derivative of a function g in I ; as

D½g	ðtÞ ¼ g0ðtÞ
g0ðtÞ and Dk ¼ Dk�1

8 D:

It is natural to ask what functions belong to the class ACk
locðgÞ: The

following results answer this question if g is smooth enough.
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Lemma 2.7. Let us suppose that g 2 ACk
locðIÞ and g0a0 in I : Then f 2

ACk
locðgÞ if and only if f 8 g 2 ACk

locðIÞ: Furthermore, if f 2 ACk
locðgÞ we

have

Dj½ f 8 g	ðtÞ ¼ f ðjÞðgðtÞÞ for 14j4k and almost every t 2 I : ð2:4Þ

Proof. Assume that f 8 g 2 ACk
locðIÞ and fix t0 2 I : Lemma 2.6 gives

f ðgðtÞÞ ¼ f ðgðt0ÞÞ þ
Z t

t0

D½f 8 g	ðtÞg
0ðtÞ dt:

Integrating by parts, we have, for 14j5k; that

Z t

t0

Dj½ f 8 g	ðtÞ
ðgðtÞ � gðtÞÞj�1

ðj � 1Þ! g0ðtÞ dt

¼ Dj½f 8 g	ðt0Þ
ðgðtÞ � gðt0ÞÞj

j!
þ
Z t

t0

Djþ1½f 8 g	ðtÞ
ðgðtÞ � gðtÞÞj

j!
g0ðtÞ dt:

Consequently, we obtain

f ðgðtÞÞ ¼
Xk�1

j¼0

Dj½ f 8 g	ðt0Þ
ðgðtÞ � gðt0ÞÞj

j!

þ
Z t

t0

Dk½ f 8 g	ðtÞ
ðgðtÞ � gðtÞÞk�1

ðk � 1Þ! g0ðtÞ dt:

Then f 2 ACk
locðgÞ and we have (2.4). ]

Assume now that f 2 ACk
locðgÞ: We prove (2.4) by induction in j: Lemma

2.6 gives D½ f 8 g	ðtÞ ¼ f 0ðgðtÞÞ: Assume that Dj ½ f 8 g	ðtÞ ¼ f ðjÞðgðtÞÞ for some

j ð14j5kÞ: Since f ðjÞ 2 AC1
locðgÞ we have by Lemma 2.6 that f ðjÞðgðtÞÞ ¼

Dj½ f 8 g	ðtÞ 2 AC1
locðIÞ and

d

dt
ðDj½ f 8 g	ðtÞÞ ¼ f ðjþ1ÞðgðtÞÞg0ðtÞ:

Therefore Djþ1½ f 8 g	ðtÞ ¼ f ðjþ1ÞðgðtÞÞ: This gives (2.4). Now it is immediate
that

Dk�1½ f 8 g	ðtÞ ¼
ð f 8 gÞ

ðk�1ÞðtÞ
g0ðtÞk�1

þ Q½ð f 8 gÞ
0; . . . ; ð f 8 gÞ

ðk�2Þ; g0; . . . ; gðk�1Þ	ðtÞ
g0ðtÞ2k�1

;

ð2:5Þ
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where Q is a polynomial. Since f ðk�1Þ 2 AC1
locðgÞ; Lemma 2.6 gives Dk�1½ f

8 g	ðtÞ ¼ f ðk�1ÞðgðtÞÞ 2 AC1
locðIÞ: This fact and (2.5) give ð f 8 gÞ

ðk�1Þ 2 AC1
loc

ðIÞ:

Corollary 2.1. Assume that g 2 CkðIÞ and g0a0 in I. Then f 2 CkðgÞ if

and only if f 8 g 2 CkðIÞ:

3. SOBOLEV SPACES

Obviously one of our main problems is to define the space W k;pðg:mÞ:
There are two natural definitions:

(1) W k;pðg; mÞ is the biggest space of (classes of) functions f regular
enough with jj f jjW k;pðg;mÞ51:

(2) W k;pðg; mÞ is the closure of a good set of functions (e.g. C1ðgÞ or P)
with the norm jj � jjW k;pðg;mÞ:

However both approaches have serious difficulties:

We consider first approach (1). It is clear that the derivatives f ðjÞ must be
derivatives along g in order to obtain a complete Sobolev space. Therefore,
we need to restrict the measures m to a class of p-admissible measures (see
Definition 3.6). Roughly speaking, m is p-admissible if ðmjÞs; for 14j4k; is
concentrated in the set of points where f ðjÞ is continuous, for every function
f of the space; otherwise f ðjÞ is determined, up to zero-Lebesgue measure
sets. Then ðmkÞs is identically zero. However, there is no restriction on the
support of ðm0Þs:

This reasonable approach excludes norms appearing in the theory of
Sobolev orthogonal polynomials. Even if we work with the simpler case of
the weighted Sobolev spaces W k;pðg;wÞ (measures without singular part) we
must impose the condition that wj belongs to the class Bp (see Definition 3.2)
in order to have a complete weighted Sobolev space (see, e.g. [KO]).

Approach (2) is simpler: we know that the completion of every normed
space exists (e.g. ðC1ðgÞ; jj � jjW k;pðg;mÞÞ or ðP; jj � jjW k;pðg;mÞÞÞ; but we have two
difficulties. The first one is evident: we do not get an explicit description of
the Sobolev functions as in (1) (in Section 6 there are several theorems which
prove that both definitions of Sobolev space are the same for p-admissible
measures). The second problem is worse: The completion of a normed space
is by definition a set of equivalence classes of Cauchy sequences. In many
cases this completion is not a function space (see [R1, Theorem 3.1 and its
Remark]).

However, since we need to work with the multiplication operator in Pk;p

ðg; mÞ; we have to choose this second approach if m is not p-admissible. First
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of all, we explain the definition of generalized Sobolev space on a curve. Let
us start with some preliminary technical definitions.

Definition 3.1. We say that two functions u; v are comparable on the
set ADg if there are positive constants c1; c2 such that c1vðxÞ4uðxÞ4c2vðxÞ
for almost every x 2 A: Since measures and norms are functions on
measurable sets and vectors, respectively, we can talk about comparable
measures and comparable norms. We say that two vectorial weights or
vectorial measures are comparable if each component is comparable.

In what follow, the symbol a � b means that a and b are comparable for a

and b functions, measures or norms.
Obviously, the spaces LpðA; mÞ and LpðA; nÞ are the same and have

comparable norms if m and n are comparable on A: Therefore, in order to
obtain our results we can replace a measure m by any comparable measure n:

To define a Sobolev space along a curve g we consider first a class of
weights which plays an important role in our results.

Definition 3.2. If 14p41; we say that a weight w belongs to
Bpð½z1; z2	Þ if and only if

w�1 2 L1=ðp�1Þð½z1; z2	Þ if p51;

w�1 2 L1ð½z1; z2	Þ if p ¼ 1:

Also, if J is any arc of g we say that w 2 BpðJÞ if w 2 BpðJ0Þ for every
compact arc J0DJ: We say that a weight belongs to BpðJÞ; where J is a
union of disjoint arcs

S
i2A Ji; if it belongs to BpðJiÞ; for i 2 A:

If the curve g is R; then BpðRÞ contains the classical ApðRÞ weights
appearing in Harmonic Analysis (see [Mu1] or [GR]). The classes BpðOÞ;
with ODRn and ApðRnÞð15p51Þ have been used in other definitions of
weighted Sobolev spaces on Rn in [KO,K], respectively.

Definition 3.3. Let us consider 14p41 and a vectorial measure
m ¼ ðm0; . . . ; mkÞ defined on the curve g: For 04j4k we define the open
set

Oj :¼ fz 2 g : 9 an open neighbourhood V of z on the curve g

with wj 2 BpðVÞg:

Remark. Observe that we always have wj 2 BpðOjÞ for any 14p41 and
04j4k: In fact, Oj is the greatest open set U with wj 2 BpðUÞ: Obviously,
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Oj depends on m and p; although p and m do not appear explicitly
in the symbol Oj: Applying H .oolder inequality it is easy to check that
if f ðjÞ 2 LpðOj;wjÞ with 14j4k; then f ðjÞ 2 L1

locðOjÞ and f ðj�1Þ 2
AC1

locðOjÞ:

The following definitions also depend on m and p; although m and p do not
appear explicitly.

Let us consider 14p41; a vectorial measure m ¼ ðm0; . . . ; mkÞ and z0 2 g:
We can modify the measure m in a neighbourhood of z0; using the following
version of Muckenhoupt inequality in curves. This modified measure is
equivalent in some sense to the original one (see Theorem 4.1).

Theorem 3.1 (Muckenhoupt Inequality in Curves). Let us consider 14
p41; ½z0; z1	Dg and m0; m1 measures in ðz0; z1	: Assume also ðm0Þs � 0 if

p ¼ 1: Then there exists a positive constant c such thatZ z1

z

gðzÞ dz
����

����
����

����
Lpððz0;z1	;m0Þ

4cjjgjjLpððz0;z1	;m1Þ ð3:1Þ

for any measurable function g in ðz0; z1	; if and only if

sup
z2ðz0;z1Þ

m0ððz0; z	Þjjw�1
1 jjL1=ðp�1Þð½z;z1	Þ51 if 14p51;

ess sup
z2ðz0;z1Þ

w0ðzÞ
Z z1

z
w1ðxÞ�1jdxj51 if p ¼ 1; ð3:2Þ

where ess sup refers to the arc-length.

Remark. This inequality is already known if g is contained in the
real line (see [Mu2,M, p. 44] for 14p51; and [RARP1, Lemma 3.2] for
p ¼ 1Þ:

Proof. We only deal with the case 15p51; the cases p ¼ 1 and p ¼ 1
are similar. Consider the arc-length parametrization g : ½a; b	 ! ½z0; z1	:
We prove first that (3.2) implies (3.1). We can define measures mn

0 ; m
n
1 ða; b	

as follows: mn
i ðDÞ ¼ miðgðDÞÞ for any Borel subset D of ða; b	 and for

i ¼ 0; 1: Consequently,
R z2

z1
f dmi ¼

R b

a
ð f 8 gÞ dmn

i for any f 2 L1ðg; miÞ: Note

that wn
1 ; the absolutely continuous part of mn

1 ; is equal to w1 8 g almost

everywhere, since jg0j ¼ 1 almost everywhere. By condition (3.2) we
have

sup
t2ða;bÞ

mn

0ðða; t	Þjjðwn

1Þ
�1jjL1=ðp�1Þðt;b	Þ51;
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since wn
1 ¼ w1 8 g and jg0j ¼ 1 almost everywhere. Muckenhoupt inequality

in the real line givesZ b

t

jgðgðtÞÞj dt
����

����
����

����
Lpðða;b	;mn

0
Þ
4cjjg 8 gjjLpðða;b	;mn

1
Þ;

for any measurable function g defined in ðz0; z1	: This inequality and the
facts jjg 8 gjjLpðða;b	;mn

1
Þ ¼ jjgjjLpððz0;z1	;m1Þ andZ z1

z

gðzÞ dz
����

����
����

����
Lpððz0;z1	;m0Þ

¼
Z gðbÞ

gðtÞ
gðzÞ dz

�����
�����

�����
�����
Lpðða;b	;mn

0
Þ

¼
Z b

t

gðgðtÞÞg0ðtÞ dt
����

����
����

����
Lpðða;b	;mn

0
Þ

4
Z b

t

jgðgðtÞÞj dt
����

����
����

����
Lpðða;b	;mn

0
Þ
;

give (3.1).
Assume now (3.1). Fix z 2 ðz0; z1Þ and consider the function g in ðz0; z1	

defined by

gðzÞ :¼ w1ðzÞ�1=ðp�1Þw½z;z1	=AðzÞg0ðg�1ðzÞÞ;

if w1 2 Bpððz0; z1	Þ; where A is a set of zero length in ðz0; z1	 with ðm1Þs

concentrated in A: If w1 =2 Bpððz0; z1	Þ; we can consider w1 þ e instead of w1

and take the limit as e ! 0þ: We have

jjgjjp
Lpððz0;z1	;m1Þ ¼

Z z1

z
w1ðzÞ�1=ðp�1Þjdzj ¼ jjw�1

1 jj1=ðp�1Þ	
L1=ðp�1Þð½z;z1	Þ ð3:3Þ

and Z z1

z

gðxÞ dx
����

����
����

����
p

Lpððz0;z1	;m0Þ
5
Z z

z0

Z z1

z

gðxÞ dx
����

����
p

dm0ðzÞ

¼
Z z

z0

Z z1

z
gðxÞ dx

����
����
p

dm0ðzÞ

¼ m0ððz0; z	Þjjw�1
1 jjp=ðp�1Þ

L1=ðp�1Þðz;z1	Þ; ð3:4Þ
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since

Z z1

z
gðxÞ dx ¼

Z b

t

gðgðtÞÞg0ðtÞ dt

¼
Z b

t

w1ðgðtÞÞ�1=ðp�1Þg0ðtÞ g0ðtÞ dt ¼
Z z1

z
w1ðxÞ�1=ðp�1Þjdxj;

if gðtÞ ¼ z: Now (3.1), (3.3) and (3.4) give (3.2). ]

Definition 3.4. A vectorial measure m ¼ ðm0; . . . ; mkÞ is a right comple-
tion of a vectorial measure m ¼ ðm0; . . . ; mkÞ with respect to z0 2 g in a right
neighbourhood ½z0; z1	; if mk ¼ mk in g; mj ¼ mj in the complement of ðz0; z1	
and

mj ¼ mj þ *mmj in ðz0; z1	 for 04j5k;

where *mmj is any measure satisfying:

(i) *mmjððz0; z1	Þ51 if 14p51;

(ii) ð *mmjÞs � 0 and *wwj 2 L1ð½z0; z1	Þ if p ¼ 1;

(iii) Lpð *mmj; mjþ1Þ51; with

Lpðn; sÞ :¼ sup
z2ðz0;z1Þ

nððz0; z	Þ
ds
ds

� 	�1
�����

�����
�����

�����
L1=ðp�1Þð½z;z1	Þ

if 14p51;

L1ðn; sÞ :¼ ess sup
z2ðz0;z1Þ

dn
ds

ðzÞ
Z z1

z

ds
ds

� 	�1

ðxÞjdxj:

The Muckenhoupt inequality guarantees that if f ðjÞ 2 LpðmjÞ and f ðjþ1Þ 2
Lpðmjþ1Þ; then f ðjÞ 2 LpðmjÞ: If we work with absolutely continuous
measures, we also say that a vectorial weight w is a completion of m (or
of w).

The following is an example of a completion when g is an interval. It can
be generalized to curves in an obvious way.

Example. We choose *wwj :¼ 0 if wjþ1 =2 Bpððy; y þ e	Þ; if wjþ1 2 Bpð½y; y þ
e	Þ we set *wwjðxÞ :¼ 1 in ½y; y þ e	; and if wjþ1 2 Bpððy; y þ e	Þ=Bpð½y; y þ e	Þ we
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take *wwjðxÞ :¼ 1 for x 2 ½y þ e=2; y þ e	; and

*wwjðxÞ :¼
d

dx

Z yþe

x

w
�1=ðp�1Þ
jþ1

� 	�pþ1
( )

¼ðp � 1Þwjþ1ðxÞ�1=ðp�1Þ

ð
R yþe

x
w
�1=ðp�1Þ
jþ1 Þp

if 15p51;

*wwjðxÞ :¼ jjw�1
jþ1jj

�1
L1ð½x;yþe	Þ þ

d

dx
ðjjw�1

jþ1jj
�1
L1ð½x;yþe	ÞÞ if p ¼ 1;

*wwjðxÞ :¼ min 1;

Z yþe

x

w�1
jþ1

� 	�1
( )

if p ¼ 1;

for x 2 ðy; y þ e=2Þ:

Remarks.

(1) We can define a left completion of m with respect to z0 in a similar
way.

(2) If wjþ1 2 Bpð½z0; z1	Þ; then Lpð *mmj;wjþ1Þ51 for any measure *mmj with
*mmjððz0; z1	Þ51 if 14p51 and for any bounded weight *wwj if p ¼ 1: In
particular, Lpð1;wjþ1Þ51:

(3) If m; n are comparable measures, n is a right completion of n if and
only if it is comparable to a right completion m of m:

(4) If m; n are two vectorial measures with the same absolutely
continuous part, then m is a right completion of m if and only if it is a
right completion of n:

(5) If m is a right completion of m with respect to z0 in ðz0; z1	 and
z2 2 ðz0; z1Þ; the measure mn defined by

mn ¼
m in ½z0; z2	;
m in g=½z0; z2	;

(

is a right completion of m with respect to z0 in ðz0; z2	:
(6) If m is a right completion of m with respect to z0 in ðz0; z1	 and

z1 2 ðz0; z2Þ; m is also a right completion of m with respect to z0 in ðz0; z2	 (it
is enough to take *mm � 0 in ðz1; z2	Þ:

(7) Let us fix z3 2 ðz0; z1	: If for every z2 2 ðz0; z3	 we have wjþ1 =2
Bpððz0; z2	Þ; then there exists some z4 2 ðz0; z1	 such that every *mmj must be 0
in ðz0; z4Þ:
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Definition 3.5. For 14p41 and a vectorial measure m; we say that a
point z0 2 g is right j-regular (respectively, left j-regular), if there exist a
right completion m (respectively, left completion) of m in ½z0; z1	 and j5i4k

such that wi 2 Bpð½z0; z1	Þ (respectively, Bpð½z1; z0	ÞÞ: Also, we say that a
point z0 2 g is j-regular, if it is right and left j-regular.

Remarks.

(1) A point z0 2 g is right j-regular (respectively, left j-regular), if at
least one of the following properties is verified:

(a) There exist a right (respectively, left) neighbourhood ½z0; z1	
(respectively, ½z1; z0	) and j5i4k such that wi 2 Bpð½z0; z1	Þ (respectively,
Bpð½z1; z0	Þ). Here we have chosen *wwj ¼ 0:

(b) There exist a right (respectively, left) neighbourhood ½z0; z1	
(respectively, ½z1; z0	) and j5i4k; a > 0; d5dp with dp :¼ ði � jÞp � 1 if 1
4p51 and d1 :¼ i � j � 1; such that wiðzÞ5ajz � z0jd; for almost every
z 2 ½z0; z1	 (respectively, ½z1; z0	) and we have jz � z0j � jg�1ðzÞ � g�1ðz0Þj in
½z0; z1	 (respectively, ½z1; z0	), when g is the arc-length parametrization. See
Lemma 3.4 in [RARP1].

(2) If z0 is right j-regular (respectively, left), then it is also right
i-regular (respectively, left) for each 04i4j:

(3) We can take i ¼ j þ 1 in this definition since by the second remark
after Definition 3.4 we can choose wl ¼ wl þ 1 2 Bpð½z0; z1	Þ for j5l5i; if
j þ 15i:

(4) If z0 is right j-regular, by Remark 3 there exists a right completion m
of m with wjþ1 2 Bpð½z0; z1	Þ: If furthermore wk 2 Bpððz0; z2	Þ with
z1 2 ðz0; z2Þ we can assume that wjþ1 2 Bpð½z0; z2	Þ:

(5) If m; n are two vectorial measures with the same absolutely
continuous part, then z0 is right j-regular (respectively, left) with respect
to m if and only if it is right j-regular (respectively, left) with respect to n:

When we use this definition we think of a point fzg as the union of two
half-points fzþg and fz�g: With this convention, each one of the following
sets:

ðz0; z1Þ [ ðz1; z2Þ [ fzþ1 g ¼ ðz0; z1Þ [ ½ðzþ1 ; z2Þaðz0; z2Þ;

ðz0; z1Þ [ ðz1; z2Þ [ fz�1 g ¼ ðz0; z�1 Þ	 [ ðz1; z2Þaðz0; z2Þ;

has two connected components, and the set

ðz0; z1Þ [ ðz1; z2Þ [ fz�1 g [ fzþ1 g ¼ ðz0; z1Þ [ ðz1; z2Þ [ fz1g ¼ ðz0; z2Þ;

is connected.
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We only use this convention in order to study the sets of continuity of
functions: we want that if f 2 CðAÞ and f 2 CðBÞ; where A and B are union
of arcs, then f 2 CðA [ BÞ: With the usual definition of continuity in an arc,
if f 2 Cð½z0; z1ÞÞ \ Cð½z1; z2	Þ then we do not have f 2 Cð½z0; z2	Þ: Of course,
we have f 2 Cð½z0; z2	Þ if and only if f 2 Cð½z0; z�1 	Þ \ Cð½zþ1 ; z2	Þ; where by
definition, Cð½zþ1 ; z2	Þ ¼ Cð½z1; z2	Þ and Cð½z0; z�1 	Þ ¼ Cð½z0; z1	Þ: This idea
can be formalized with a suitable topological space.

Let us introduce some more notation. We denote by OðjÞ the set of
j-regular points or half-points, i.e., z 2 OðjÞ if and only if z is j-regular, we
say that zþ 2 OðjÞ if and only if z is right j-regular, and we say that z� 2 OðjÞ

if and only if z is left j-regular. Obviously, OðkÞ ¼ | and Ojþ1 [ � � � [
OkDOðjÞ: Observe that OðjÞ depends on p (see Definition 3.5).

Remark. If 04j5k and J is an arc in g; JDOðjÞ; then the set J =ðOjþ1 [
� � � [ OkÞ is discrete: If zþ 2 J =ðOjþ1 [ � � � [ OkÞ; there exist ðz; z1	DJ; a right
completion m and j5i4k with wi 2 Bpð½z; z1	Þ: Then there exist z2 2 ðz; z1	
and i4l4k with wl 2 Bpððz; z2	Þ and consequently ðz; z2ÞDOjþ1 [ � � � [ Ok

(see Remark 7 to Definition 3.4). The same is true for z� with the obvious
changes.

Definition 3.6. We say that the vectorial measure m ¼ ðm0; . . . ; mkÞ is
p-admissible if

ðmj � ðwjÞjOj
Þðg=OðjÞÞ ¼ 0 for 14j4k:

We say that m is strongly p-admissible if suppðmj � ðwjÞjOj
ÞDOðjÞ; for

14j4k:

We use the letter p in p-admissible in order to emphasize the dependence
on p (recall that OðjÞ depends on p).

Remarks

(1) There is no condition on m0:

(2) We have ðmkÞs � 0 and wk ¼ 0 in almost every z 2 g=Ok; since
OðkÞ ¼ |:

(3) Every absolutely continuous measure w with wjðzÞ ¼ 0 in almost
every z 2 g=Oj for 14j4k is p-admissible.

(4) Recall that we are identifying wj with the measure wj ds:

(5) This definition is more general than the definition of p-admissible
measure in [RARP1]; there we always assume wjðzÞ ¼ 0 in g=Oj: There exist
weights which do not satisfy this reasonable condition: Consider a Cantor
set C in ½0; 1	 with positive length and define w1 :¼ 1 in C and w1ðxÞ :¼
distðx;CÞ if x 2 R=C; it is clear that O1 ¼ R=C and w1 ¼ 1 in C:
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Definition 3.7 (Sobolev Space). Let us consider 14p41 and
m ¼ ðm0; . . . ; mkÞ a p-admissible vectorial measure. We define the Sobolev
space W k;pðg; mÞ as the space of equivalence classes of

V k;pðg; nÞ :¼ f f : g ! Cj f ðjÞ 2 AC1
locðOðjÞÞ for 04j5k and

jj f ðjÞjjLpðg;mjÞ51 for 04j4kg;

with respect to the seminorm

jj f jjW k;pðg;mÞ :¼
Xk

j¼0

jj f ðjÞjjp
Lpðg;mjÞ

 !1=p

for 14p51

and

jj f jjW k;1ðg;mÞ :¼ max
04j4k

jj f ðjÞjjL1ðg;mjÞ;

where

jjgjjL1ðg;mjÞ :¼ max ess sup
z2g

jgðzÞjwjðzÞ; sup
z2supp ðmjÞs

jgðzÞj
( )

and we assume the usual convention sup | ¼ �1:

Remark. It is natural to ask for f ðjÞ 2 AC1
locðOðjÞÞ; since when the

ðmjÞs-measure of the set where j f ðjÞj is not continuous is positive, the integralR
j f ðjÞjp dðmjÞs does not make sense.

4. TECHNICAL RESULTS

Lemma 4.1. Let 14p41; I ¼ ½z0; z1	 a compact arc in g and m ¼
ðm0; . . . ; mkÞ a p-admissible vectorial measure in I, with ðz0; z1	DOðk0�1Þ for

some 05k04k: If we construct a right completion m of m with respect to the

point z0; satisfying mj ¼ mj for k04j4k; then there exists a positive constant c

such that

cjjgðjÞjjLpðI ; %mmjÞ4
Xk0

i¼j

jjgðiÞjjLpðI ;miÞ þ
Xk0�1

i¼j

jgðiÞðz1Þj;

for all 04j5k0 and g 2 Vk;pðI ; mÞ: In particular, we have

cjjgjjW k;pðI ; %mmÞ4jjgjjW k;pðI ;mÞ þ
Xk0�1

j¼0

jgðjÞðz1Þj;

for all g 2 V k;pðI ; mÞ:
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Proof. The fact %mmj ¼ mj for k04j4k and the first inequality give the
second one, Then we only need to prove the first inequality. If g 2 Vk;pðI ; mÞ;
we have gðjÞ 2 AC1

locððz0; z1ÞÞ since ðz0; z1	DOðjÞDOðk0�1Þ: Muckenhoupt
inequality gives

cjjgðjÞðzÞ � gðjÞðz1ÞjjLpðI ; *mmjÞ4jjgðjþ1ÞjjLpðI ;mjþ1Þ

for 04j5k0 (we can consider the point z1 as the limit of the completion by
Remarks 5 and 6 to Definition 3.4). Then we have for 14p41;

cjjgðjÞjjLpðI ; *mmjÞ4jjgjjðjþ1ÞjjLpðI ;mjþ1Þ þ jgðjÞðz1Þj

since *mmjðIÞ51 if 14p51; and *wwj 2 L1ðIÞ and *mmj is absolutely continuous
if p ¼ 1: This inequality gives now

cjjgðjÞjjLpðI ;mjÞ4jjgðjÞjjLpðI ;mjÞ þ jjgðjþ1ÞjjLpðI ;mjþ1Þ þ jgðjÞðz1Þj

for 04j5k0: This fact and mk0
¼ mk0

prove the first inequality. ]

Lemma 4.2. Let us consider 14p41; I a compact arc in g; z0 2 int I

and mk an absolutely continuous measure in I, with wk 2 Bpðint IÞ: Assume

also that Oð0Þ ¼ I for m ¼ ð0; . . . ; 0; mkÞ: Then, there exists a positive constant

c with

Z z

z0

gðkÞðzÞ
ðk � 1Þ! ðz � zÞk�1

dz
����

����
����

����
L1ðIÞ

4cjjgðkÞjjLpðI ;mkÞ

for every g 2 ACk
locðint IÞ:

Furthermore, if IjDOðjÞ is a compact arc ð04j5kÞ; then there exists a positive

constant c with

Z z

z0

gðkÞðzÞ
ðk � j � 1Þ! ðz � zÞk�j�1

dz
����

����
����

����
L1ðIjÞ

4cjjgðkÞjjLpðI ;mkÞ;

for every g 2 ACk
locðint IÞ:

Proof. We prove the first inequality; the second one is an immediate
consequence of it. Without loss of generality we can assume that
g 2 V k;pðI ; mÞ; since otherwise jjgðkÞjjLpðI ;mkÞ ¼ 1; and the inequality is
trivial. Assume that I ¼ ½z1; z2	: Since z1 is right 0-regular, by
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Remark 4 to Definition 3.5, there exists a right completion m of m with
respect to z1; with w1 2 Bpð½z1; z0	Þ: Then, by Lemma 4.1 we have that

cjjg0jjLpð½z1;z0	;m1Þ4jjgjjW k;pð½z1;z0	;mÞ þ
Xk�1

j¼1

jgðjÞðz0Þj

for all g 2 Vk;pð½z1; z0	; mÞ; and so

jjgjjL1ð½z1;z0	Þ4 jjg0jjL1ð½z1;z0	Þ þ jgðz0Þj4cjjg0jjLpð½z1;z0	;m1Þ þ jgðz0Þj

4 cjjgjjW k;pð½z1;z0	;mÞ þ c
Xk�1

j¼0

jgðjÞðz0Þj:

A symmetric argument gives

jjgjjL1ð½z0;z2	Þ4cjjgjjW k;pð½z0;z2	;mÞ þ c
Xk�1

j¼0

jgðjÞðz0Þj:

Since the function

aðzÞ :¼
Z z

z0

gðkÞðzÞ
ðk � 1Þ! ðz � zÞk�1

dz

verifies aðjÞðz0Þ ¼ 0 for 04j5k; the proof is finished. ]

Proposition 4.1. Let us consider 14p41; I a compact arc in g and

m ¼ ðm0; 0; . . . ; 0; mkÞ a vectorial measure in I with mk absolutely continuous,
wk 2 Bpðint IÞ and #suppðm0jOð0Þ\IÞ5k: Define

X ¼ f f 2 ACk
locðIÞ : jj f ðkÞjjLpðI ;mkÞ51g:

Then, given compact arcs IjDOðjÞ \ I for 04j5k; there exists a positive

constant c with

c
Xk�1

j¼0

jj f ðjÞjjL1ðIjÞ4jj f jjLpðI ;m0Þ þ jj f ðkÞjjLpðI ;mkÞ for every f 2 X :

Proof. Without loss of generality we can assume that m0ðIÞ51; since in
other case the right-hand side of the inequality is greater. Without loss of
generality we can assume that Oð0Þ \ I ¼ I ; since otherwise we can change I

by I0 [ I1 [ � � � [ Ik�1 [ L; where L is any compact arc contained in Oð0Þ \ I

and with #suppðm0jLÞ5k: We can assume also |aIk�1DIk�2D � � �DI0 ¼ I

and even Ij ¼ I if OðjÞ \ I ¼ I :
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We prove first that the normed spaces ðX ; jj � jjAÞ and ðX ; jj � jjBÞ are
complete, where

jj f jjA :¼ jj f jjLpðI ;m0Þ þ jj f ðkÞjjLpðI ;mkÞ; jj f jjB :¼
Xk�1

j¼0

jj f ðjÞjjL1ðIjÞ þ jj f ðkÞjjLpðI ;mkÞ:

We start now by proving the completeness of the space ðX ; jj � jjAÞ:
Observe first that jj � jjA is a norm in X : if jj f kjjLpðI ;mkÞ ¼ 0; then f 2 Pk�1;

this fact and jj f jjLpðI ;m0Þ ¼ 0 gives f ¼ 0 in I ; since jj � jjLpðI ;m0Þ is a norm on

Pk�1 (recall that m0 is finite and #suppðm0jOð0Þ\IÞ5kÞ: Let us consider a

Cauchy sequence f fng � ðX ; jj � jjAÞ: Each function can be written as

fnðzÞ ¼
Xk�1

j¼0

f
ðjÞ

n ðz0Þ
j!

ðz � z0Þj þ
Z z

z0

f
ðkÞ

n ðzÞ
ðk � 1Þ! ðz � zÞk�1

dz;

with z0 2 Ik�1: So,

fnðzÞ � fmðzÞ ¼
Xk�1

j¼0

f
ðjÞ

n ðz0Þ � f
ðjÞ

m ðz0Þ
j!

ðz � z0Þj

þ
Z z

z0

f
ðkÞ

n ðzÞ � f
ðkÞ

m ðzÞ
ðk � 1Þ! ðz � zÞk�1

dz:

Lemma 4.2 givesZ z

z0

f
ðkÞ

n ðzÞ � f
ðkÞ

m ðzÞ
ðk � 1Þ! ðz � zÞk�1

dz

�����
�����

�����
�����
LpðI ;m0Þ

4c

Z z

z0

f
ðkÞ

n ðzÞ � f
ðkÞ

m ðzÞ
ðk � 1Þ! ðz � zÞk�1

dz

�����
�����

�����
�����
L1ðIÞ

4cjj f ðkÞ
n � f ðkÞ

m jjLpðI ;mkÞ ! 0;

as n;m ! 1; since m0 is finite. Using that jj fn � fmjjLpðI ;m0Þ ! 0 as n;m ! 1
we obtain Xk�1

j¼0

f
ðjÞ

n ðz0Þ � f
ðjÞ

m ðz0Þ
j!

ðz � z0Þj

�����
�����

�����
�����
LpðI ;m0Þ

! 0;

as n;m ! 1: Since jj � jjLpðI ;m0Þ is a norm on Pk�1; we have that f
ðjÞ

n ðz0Þ ! cj

for some constants cj ; with 04j4k � 1 andXk�1

j¼0

f
ðjÞ

n ðz0Þ � cj

j!
ðz � z0Þj

�����
�����

�����
�����
LpðI ;m0Þ

! 0; ð4:1Þ
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as n ! 1: We obviously have functions F0 2 LpðI ; m0Þ; Fk 2 LpðI ; mkÞ such
that

jjF0 � fnjjLpðI ;m0Þ þ jjFk � f ðkÞ
n jjLpðI ;mkÞ ! 0;

as n ! 1: Now, we can define

*FF0ðzÞ ¼
Xk�1

j¼0

cj

j!
ðz � z0Þj þ

Z z

z0

FkðzÞ
ðk � 1Þ!ðz � zÞk�1

dz:

Next we prove *FF 0 ¼ F0; m0-almost everywhere in I ; this fact gives
jj *FF 0 � fnjjA ! 0 as n ! 1: We have this by (4.1) andZ z

z0

f
ðkÞ

n ðzÞ � FkðzÞ
ðk � 1Þ! ðz � zÞk�1

dz

�����
�����

�����
�����
LpðI ;m0Þ

4cjj f ðkÞ
n � FkjjLpðI ;mkÞ ! 0;

as n ! 1: This gives the completeness of the space ðX ; jj � jjAÞ:
We prove now the completeness of the space ðX ; jj � jjBÞ: Let us consider a

Cauchy sequence f fng � ðX ; jj � jjBÞ: For each 04j4k there exists Fj with

jjFj � f ðjÞ
n jjL1ðIjÞ ! 0 for 04j5k; jjFk � f ðkÞ

n jjLpðI ;mkÞ ! 0;

as n ! 1: If we fix z0 2 Ik�1; we have

f ðjÞ
n ðzÞ ¼

Xk�1

i¼j

f
ðiÞ

n ðz0Þ
ði � jÞ!ðz � z0Þi�j þ

Z z

z0

f
ðkÞ

n ðzÞ
ðk � j � 1Þ!ðz � zÞk�j�1

dz

for z 2 Ij and 04j5k: By Lemma 4.2 and the uniform convergence of f
ðjÞ

n in
Ij; we have

FjðzÞ ¼
Xk�1

i¼j

Fiðz0Þ
ði � jÞ!ðz � z0Þi�j þ

Z z

z0

FkðzÞ
ðk � j � 1Þ!ðz � zÞk�j�1

dz

for z 2 Ij and 04j5k: Consequently F
ðjÞ
0 ¼ Fj in Ij ; for 04j5k and

F
ðkÞ
0 ¼ Fk in I : This gives the completeness of ðX ; jj � jjBÞ:
Observe that jj f jjA4cjj f jjB for every f 2 X : Since ðX ; jj � jjAÞ and ðX ;

jj � jjBÞ are Banach spaces, the open mapping theorem in Banach spaces gives
jj f jjB4cjj f jjA for every f 2 X ; and this finishes the proof. ]

Proposition 4.2. Let us consider 14p41; I a compact arc in g and

m ¼ ðm0; . . . ; mkÞ a p-admissible vectorial measure in I ; with wk 2 Bpðint IÞ;
and #suppðm0jOð0Þ\I Þ5k: Then, given compact arcs IjDOðjÞ \ I for 04j5k;
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there exists a positive constant c with

c
Xk�1

j¼0

jj f ðjÞjjL1ðIjÞ4jj f jjW k;pðI ;mÞ for every f 2 Vk;pðI ; mÞ:

Remark. Observe that in Proposition 4.1 the set OðjÞ only depends on wk:
However, in Proposition 4.2 the set OðjÞ depends on wjþ1; . . . ;wk:

Proof. By Proposition 4.1 the result holds if Ij � int I : Therefore, we
only need to obtain the bounds in a neighbourhood of @I : If I ¼ ½z1; z2	;
assume that z1 2 Ij for some 04j5k (the case z2 2 Ij is symmetric). Since
Ij � OðjÞ \ I ; there exist a completion m and z0 2 ðz1; z2Þ with wjþ1 2
Bpð½z1; z0	Þ: Then Lemma 4.1 and Proposition 4.1 give

jj f ðjÞjjL1ð½z1;z0	Þ4 jj f ðjþ1ÞjjL1ð½z1;z0	Þ þ j f ðjÞðz0Þj

4 cjj f ðjþ1ÞjjLpð½z1;z0	;mjþ1Þ þ j f ðjÞðz0Þj

4 cjj f jjW k;pð½z1;z0	;mÞ þ c
Xk�1

i¼0

j f ðiÞðz0Þj4cjj f jjW k;pðI ;mÞ: ]

Definition 4.1. Let us consider 14p41 and m a p-admissible
vectorial measure in g: Let us define the space Kðg; mÞ as

Kðg; mÞ :¼ fg :Oð0Þ ! C=g 2 Vk;pðg; mjOð0Þ Þ; jjgjjW k;pðg;mj
Oð0Þ Þ

¼ 0g:

Kðg; mÞ is the equivalence class of 0 in W k;pðg; mjOð0Þ Þ: Therefore,
jj � jjW k;pðg;mÞ is a norm if and only if Kðg;mÞ ¼ f0g: It plays an important
role in the study of the multiplication operator in Sobolev spaces (see
Theorem 8.3 below) and in the following definition of classes C and C0;
which will be crucial in the study of Sobolev spaces (see Theorems 4.1, 4.2
and 5.1 below).

The case in which jj � jjW k;pðg;mÞ is a norm is the most interesting. However
we need something more in order to prove part (a) of Theorem 4.1 below:
this additional condition is what we present in our following definition of
class C0: Roughly speaking, m 2 C0 if jj � jjW k;pðMn;mÞ is a norm for some
sequence of compact sets fMng growing to g: This condition is exactly what
we need since in the proof of Theorem 4.1 we approximate g by compact sets.

If m =2 C0 we still can prove part (b) of Theorem 4.1 by adding some Dirac
deltas to m0; we only add the exact amount that we need. This leads to the
definition of class C:

Definition 4.2. Let us consider 14p41 and m a p-admissible
vectorial measure in g: We say ðg; mÞ belongs to the class C0 if there
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exist compact sets Mn; which are a finite union of compact arcs in g; such
that

(i) Mn intersects at most a finite number of connected components of
O1 [ � � � [ Ok;

(ii) KðMn;mÞ ¼ f0g;
(iii) MnDMnþ1;

(iv)
S

n Mn ¼ Oð0Þ:

We say that ðg; mÞ belongs to the class C if there exists a measure m00 ¼
m0 þ

P
m2D cmdzm

with cm > 0; fzmg � Oð0Þ; DDN and ðg; m0Þ 2 C0; where
m0 ¼ ðm00; m1; . . . ; mkÞ is minimal in the following sense: there exists fMng
corresponding to ðg; m0Þ 2 C0 such that if m000 ¼ m00 � cm0

dzm0
with m0 2 D and

m00 ¼ ðm000 ; m1; . . . ; mkÞ; then KðMn; m00Þaf0g if zm0
2 Mn:

Remarks

(1) The condition ðg; mÞ 2 C is not very restrictive. In fact, the proof of
Theorem 4.1 gives that if Oð0Þ=ðO1 [ � � � [ OkÞ has only a finite number of
points in each connected component of Oð0Þ; then ðg; mÞ 2 C: If furthermore
Kðg; mÞ ¼ f0g; we have ðg; mÞ 2 C0:

(2) Since the restriction of a function of Kðg; mÞ to Mn is in KðMn; mÞ for
every n; then ðg; mÞ 2 C0 implies Kðg; mÞ ¼ f0g:

(3) If ðg; mÞ 2 C0; then ðg; mÞ 2 C; with m0 ¼ m:
(4) The proof of Theorem 4.1 gives that if for every connected component

L of O1 [ � � � [ Ok we have KðL; mÞ ¼ f0g; then ðg; mÞ 2 C0: The Condition
#supp m0j %LL\Oð0Þ5k implies KðL; mÞ ¼ f0g:

The next results play a central role in the theory of Sobolev spaces in
curves. The first one answers to the following main question: when the
evaluation functional of f (or f ðjÞ) in a point is a bounded operator in
W k;pðg; mÞ?

Theorem 4.1. Let us consider 14p41 and m ¼ ðm0; . . . mkÞ a p-
admissible vectorial measure in g: Let Kj be a finite union of compact arcs

contained in OðjÞ; for 04j5k and m a right (or left) completion of m: Then:

(a) If ðg; mÞ 2 C0 there exist positive constants c1 ¼ c1ðK0; . . . ;Kk�1Þ and

c2 ¼ c2ðm;K0; . . . ;Kk�1Þ such that

c1
Xk�1

j¼0

jjgðjÞjjL1ðKjÞ4jjgjjW k;pðg;mÞ; c2jjgjjW k;pðg;mÞ4jjgjjW k;pðg;mÞ;

8g 2 Vk;pðg; mÞ:
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(b) If ðg; mÞ 2 C there exist positive constants c3 ¼ c3ðK0; . . . ;Kk�1Þ and

c4 ¼ c4ðm;K0; . . . ;Kk�1Þ such that for every g 2 V k;pðg; mÞ; there exists g0 2
V k;pðg; mÞ; independent of K0; . . . ;Kk�1; c3; c4 and m; with

jjg0 � gjjW k;pðg;mÞ ¼ 0;

c3
Xk�1

j¼0

jjgðjÞ
0 jjL1ðKjÞ4jjg0jjW k;pðg;mÞ ¼ jjgjjW k;pðg;mÞ;

c4jjg0jjW k;pðg;Þm4jjgjjW k;pðg;mÞ:

Furthermore, if g0; f0 are, respectively, these representatives of g; f ; we have

with the same constants c3; c4

c3
Xk�1

j¼0

jjgðjÞ
0 � f

ðjÞ
0 jjL1ðKjÞ4jjg � f jjW k;pðg;mÞ;

c4jjg0 � f0jjW k;pðg;mÞ4jjg � f jjW k;pðg;mÞ:

Proof. The main ingredient in the proof is Proposition 4.2. We only need
to cut in an appropriate way the compact sets Kj in order to fulfill the
hypotheses of this proposition. To see the details we can follow the
argument in the proof of Theorem 4.3 in [RARP1] (Proposition 4.2 plays the
role of Corollary 4.1 in [RARP1]). ]

Theorem 4.2. Let us consider 14p41 and m a p-admissible vectorial

measure in g: Let Kj be a finite union of compact arcs contained in OðjÞ; for

04j5k: Then:

(a) If ðg; mÞ 2 C0 there exists a positive constant c1 ¼ c1ðK0; . . . ;Kk�1Þ
such that

c1
Xk�1

j¼0

jjgðjþ1ÞjjL1ðKjÞ4jjgjjW k;pðg;mÞ; 8g 2 Vk;pðg; mÞ:

(b) If ðg; mÞ 2 C there exists a positive constant c2 ¼ c2ðK0; . . . ;Kk�1Þ
such that for every g 2 Vk;pðg; mÞ; there exists g0 2 V k;pðg; mÞ; (the same

function as in Theorem 4.1), with

jjg0 � gjjW k;pðg;mÞ ¼ 0;

c2
Xk�1

j¼0

jjgðjþ1Þ
0 jjL1ðKjÞ4jjg0jjW k;pðg;mÞ ¼ jjgjjW k;pðg;mÞ:
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Furthermore, if g0; f0; are, respectively, these representatives of g; f ; we have

with the same constant c2

c2
Xk�1

j¼0

jjgðjþ1Þ
0 � f

ðjþ1Þ
0 jjL1ðKjÞ4jjg � f jjW k;pðg;mÞ:

The representatives g0; f0 are the same as in Theorem 4.1.

Proof. We only prove part (b) since (a) is simpler. Given a function
g 2 V k;pðg; mÞ; let us choose g0 as in Theorem 4.1(b). Fix 04j5k: Since
KjDOðjÞ; given any point z 2 Kj; there exist an arc Jz and a completion wz of
w with z 2 Jz and wz

jþ1 2 BpðJzÞ: The compactness of Kj gives that there
exists a finite set of points z1; . . . ; zl with KjDJz1 [ � � � [ Jzl

:
If we define wn

jþ1 :¼
Pl

i¼1 wzi

jþ1wJzi
the second inequality in Theorem 4.1(b)

gives

cjjgðjþ1Þ
0 jjLpðKj ;w

n

jþ1
Þ4jjg0jjW k;pðg;mÞ;

and this finishes the proof of the first inequality, since wn
jþ1 2 BpðKjÞ: The

proof of the second one is similar. ]

A simple modification in the proof of Theorem 4.2 gives Corollary 4.1.
We use the symbol W k�m;pðg; mÞ to denote the Sobolev space W k�m;pðg; ðmm;
. . . ; mkÞÞ:

Corollary 4.1. Let us consider 14p41 and m ¼ ðm0; . . . ; mkÞ a

p-admissible vectorial measure in g: For some 05m4k; assume that ðg; ðmm;

. . . ; mkÞÞ 2C0: Let K be a finite union of compact intervals contained in Oðm�1Þ:
Then there exists a positive constant c1 ¼ c1ðKÞ such that

c1jjgjjL1ðKÞ4jjgjjW k�m;pðg;mÞ; 8g 2 V k�m;pðg; mÞ:

5. COMPLETENESS

Theorem 5.1. Let us consider 14p41 and m ¼ ðm0; . . . ; mkÞ a p-
admissible vectorial measure in g with ðg; mÞ 2 C: Then the Sobolev space

wk;pðg; mÞ is complete.

Proof. Let f fng be a Cauchy sequence in W k;pðg; mÞ: For each n; let us
choose a representative of the class of fn 2 W k;pðg; mÞ (which we also denote
by fn) as in Theorems 4.1 and 4.2. Therefore, for each 04j4k; f f

ðjÞ
n g is a

Cauchy sequence in Lpðg; mjÞ and it converges to a function gj 2 Lpðg; mjÞ:
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We only need to prove that, for each 04j4k � 1; gj is (perhaps modified in
a set of zero mj-measure) a function belonging to AC1

locðOðjÞÞ such that
g0

j ¼ gjþ1 in OðjÞ:
Let us consider any compact arc KDOðjÞ (K can be the whole curve g if

OðjÞ ¼ g and it is a compact curve). By Theorems 4.1(b) and 4.2(b) we know
that there exists a positive constant c such that for every n;m 2 N

jj f ðjÞ
n � f ðjÞ

m jjL1ðKÞ þ jj f ðjþ1Þ
n � f ðjþ1Þ

m jjL1ðKÞ4c
Xk

i¼0

jj f ðiÞ
n � f ðiÞ

m jjLpðg;miÞ:

As f f
ðjÞ

n g � CðKÞ; there exists a function hj 2 CðKÞ such that

cjj f ðjÞ
n � hj jjL1ðKÞ4

Xk

i¼0

jj f ðiÞ
n � gijjLpðg;miÞ:

Since we can take as K any compact arc contained in OðjÞ; we obtain that
the function hj can be extended to OðjÞ and we have in fact hj 2 CðOðjÞÞ: It is
obvious that gj ¼ hj in OðjÞ (except for at most a set of zero mj-measure),
since f

ðjÞ
n converges to gj in the norm of Lpðg; mjÞ and to hj uniformly on each

compact arc KDOðjÞ: Therefore we can assume that gj 2 CðOðjÞÞ:
Let us see now that g0

j ¼ gjþ1 in K . We have for z; z0 2 K that

f ðjÞ
n ðzÞ ¼ f ðjÞ

n ðz0Þ þ
Z z

z0

f ðjþ1Þ
n ðzÞ dz:

The uniform convergence of f
ðjÞ

n in K and the L1-convergence of f
ðjþ1Þ

n in K

give that

gjðzÞ ¼ gjðz0Þ þ
Z z

z0

gjþ1ðzÞ dz: ]

Definition 5.1. A vectorial measure m ¼ ðm0; . . . ; mkÞ in the complex
plane belongs to (ESD) extended sequentially dominated if there exists a
positive constant c such that mjþi4cmj for 04j5k:

Remark. If m 2 ESD is a p-admissible vectorial measure in a curve g;
then ðg; mÞ 2 C0 (see Remark 4 to Definition 4.2). A vectorial measure m is
sequentially dominated if and only if m 2 ESD and #supp m0 ¼ 1: If m 2
ESD; 0 is the unique polynomial q with jjqjjW k;pðC;mÞ ¼ 0 if and only if #
supp m0 ¼ 1:

Theorem 5.2. Let us consider 14p41; g : I ! C a curve with g0 2
W k�1;1ðIÞ; and m ¼ ðm0; . . . ; mkÞ a p-admissible vectorial measure in g with

ðg; mÞ 2 C: Let us assume that m 2 ESD if k52: Then there exists a

p-admissible vectorial measure mn in I ; with ðI ; mnÞ 2 C; and mn 2 ESD if
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k52; such that the spaces W k;pðI ;mnÞ and W k;pðg; mÞ are isomorphic as

normed spaces. Furthermore, mn is finite (respectively, locally finite) if m is

finite (respectively, locally finite).

Proof. Given the measure mj in g we define the measure mn
j in I by

mn
j ðAÞ :¼ mjðgðAÞÞ; for all Borel set ADI : This measure is well defined since g

is injective (if g is a closed curve and its domain is I ¼ ½a; b	 we can consider
g : ½a; bÞ ! C in order to define mn

j ). With this definition we have that, for
any function f 2 L1ðg; mjÞ;

R
g f ðzÞ dmjðzÞ ¼

R
I

f ðgðtÞÞ dmn
j ðtÞ: We define now

mn ¼ ðmn
0; . . . ; m

n
kÞ: It is clear that mn 2 ESD if k52; and mn is finite

(respectively, locally finite) if m is finite (respectively, locally finite). We have
wn

j ¼ jg0jðwj 8 gÞ; if g is a closed curve and I ¼ ½a; b	; without loss of
generality we can also assume that gðaÞ ¼ gðbÞ is a ðk � 1Þ-regular point;
then we have that the set of j-regular points for m; is the image by g of the j-
regular points for mn: This fact gives that mn is p-admissible and ðI ;mnÞ 2 C:
It is natural to define the linear mapping F : W k;pðg; mÞ ! W k;pðI ; mnÞ given
by Fð f Þ ¼ f 8 g: We shall see that F is an isomorphism.

Observe that Fð f Þ0 ¼ f 0ðgÞg0 and that

Fð f ÞðjÞ ¼
Xj

i¼1

f ðiÞðgÞQi;jðgÞ for 14j4k;

where Qi;j is a differential operator of degree less than or equal to j: As
gðiÞ 2 L1ðIÞ for 14i4k; we obtain

jjFð f ÞðjÞjjLpðI ;mn

j
Þ 4c

Xj

i¼1

jj f ðiÞðgÞjjLpðI ;mn

j
Þ

¼ c
Xj

i¼1

jj f ðiÞjjLpðg;mjÞ4c
Xj

i¼1

jj f ðiÞjjLpðg;miÞ

4 cjj f jjW k;pðg;mÞ;

since m 2 ESD if k52: That is to say jjFð f ÞjjW k;pðI ;mnÞ4cjj f jjW k;pðg;mÞ:
Since ðg; mÞ 2 C and ðI ; mnÞ 2 C; the other inequality is a consequence of

the open mapping theorem in Banach spaces. ]

6. DENSITY

We do not have a density theorem as general as Theorem 5.1, but
Theorem 6.1 covers many important cases. We begin with the following
definitions.



WEIGHTED SOBOLEV SPACES ON CURVES 71
Definition 6.1. Consider 14p51; a compact curve g and a vectorial
measure m ¼ ðm0; . . . ; mkÞ in g: We say that m is of type 1 if it is finite and
p-admissible in g and wk 2 BpðgÞ:

Definition 6.2. Consider 14p51; a non-closed compact curve g ¼
½z1; z2	 and a vectorial measure m ¼ ðm0; . . . ; mkÞ in g: We say that m is of type
2 if it is finite and strongly p-admissible in g and there exist points along the
curve z14z15z25z35z44z2 and integers k1; k250 such that

(1) wk 2 Bpð½z1; z4	Þ;
(2) if z15z1; then wj is comparable to a non-decreasing weight in

½z1; z2	; for k14j4k;

(3) if z45z2; then wj is comparable to a non-increasing weight in
½z3; z2	; for k24j4k;

(4) z1 is right ðk1 � 1Þ-regular if k1 > 0 and z2 is left ðk2 � 1Þ-regular if
k2 > 0:

Definition 6.3. Consider 14p51; a compact curve g and a vectorial
measure m ¼ ðm0; . . . ; mkÞ in g: We say that m is of type 3 if it is finite and
p-admissible in g and there exist z0 2 g; an open neighbourhood V of z0 in g;
an integer 04r5k and a positive constant c such that

(1) dmjþ1ðzÞ4cjz � z0jp dmjðzÞ in V ; for r4j5k;

(2) wk 2 Bpðg=fz0gÞ;
(3) if r > 0; z0 is ðr � 1Þ-regular.

Remark. Condition (1) means that mjþ1 is absolutely continuous with
respect to mj on V and its Radon–Nikodym derivative is less than or equal

to cjz � z0jp:

Definition 6.4. Consider 14p51; a compact curve g and a vectorial
measure m ¼ ðm0; . . . ; mkÞ in g: We say that m is of type 4 if it is finite and
p-admissible in g and there exist z0 2 g; an open neighbourhood V of z0 in g
and a positive constant c such that

(1) if p > 1; wkðzÞ4cjz � z0jp�1 for almost every z 2 V ; if p ¼ 1; wk can
be modified in a set of zero length in such a way that limz!z0 wkðzÞ ¼ 0;

(2) wk 2 Bpðg=fz0gÞ;
(3) if k > 1; z0 is ðk � 2Þ-regular.

Definition 6.5. Consider 14p51; a non-closed compact curve
g ¼ ½z1; z2	 and a vectorial measure m ¼ ðm0; . . . ; mkÞ in g: We say that m is
of type 5 if it is finite and p-admissible in g and verifies

(1) wk 2 Bpððz1; z2ÞÞ;
(2) if k > 1; z1 is right ðk � 2Þ-regular and z2 is left ðk � 2Þ-regular.
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Remark. We want to remark that the types of measures in [RARP2] and
here do not coincide.

Lemma 6.1. Let us consider 14p51 and a finite p-admissible vectorial

measure m of type i ð14i45Þ: Then there exists a finite vectorial p-admissible

measure m0 of type i such that m0 2 ESD and m05m:

Proof. It is easy to check that the measure m0 ¼ ðm00; . . . ; m0kÞ with m0j :¼
mj þ � � � þ mk verifies the required conditions. ]

Lemma 6.2. Let us consider 14p51; c > 0; g : I ! C a curve with c�1

4jg0j4c and g0 2 W k�1;1ðIÞ; and a vectorial measure m of type i ð14i45Þ;
with m 2 ESD: Then the vectorial measure mn which appears in the statement

of Theorem 5.2 is of type i:

Proof. It is an immediate consequence of the following facts: wn
j ¼

jg0jðwj 8 gÞ; jjðwn
j Þ

�1jjL1=ðp�1ÞÞðJÞ � jjw�1
j jjL1=ðp�1ÞÞðgðJÞÞ for all arc JDI ; g is a

bijection between the j-regular sets in W k;pðI ; mnÞ and W k;pðg; mÞ; and
jgðtÞ � gðt0Þj4cjt � t0j: ]

Theorem 6.1. Let us consider 14p51; c > 0 and m ¼ ðm0; . . . ; mkÞ a

p-admissible vectorial measure in a compact curve g : I ! C: Let us assume

that c�14jg0j4c and g0 2 W k�1;1ðIÞ: If m is a measure of type 1; 2; 3; 4 or 5;
then ACkðIÞ is dense in the Sobolev space W k;pðg; mÞ: Furthermore, if g 2
C1ðIÞ; then C1ðgÞ is dense in W k;pðg; mÞ:

Proof. Assume first that g is not a closed curve. We can replace
the measure m by a greater measure, since then the theorem is more
difficult. Therefore, by Lemmas 6.1 and 6.2, we can assume m 2 ESD; and
so the measure mn which appears in the statement of Theorem 5.2 is of
type i:

We can deduce that C1ðRÞ is dense in W k;pðI ; mnÞ; this is an
immediate consequence of [RARP2, Theorem 4.1] if m is a measure
of type 1, 2 or 4. On the other hand, if m is of type 3 (respectively, 5)
this fact follows from [R3, Theorem 3.4] (respectively, [R3, Theorem 3.3]).
Recall that the types of measures in [RARP2] and here do not
coincide.

Therefore ACkðIÞ is dense in W k;pðI ; mnÞ: By Theorem 5.2 and
Lemma 2.7, ACkðgÞ is dense in W k;pðg; mÞ: If g 2 C1ðIÞ; Theorem 5.2
gives that C1ðgÞ is dense in W k;pðg; mÞ: This finishes the proof in this
case.

If g is closed the proof is similar but it is necessary to reformulate slightly
the last arguments. As an example we deal now with type 1.
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Let f 2 V k;pðg; mÞ: Let g be a continuous function in g which approximates
f ðkÞ in the Lpðg; mkÞ norm. Fix z0 2 g and consider the function

hðzÞ :¼
Xk�1

j¼0

f ðjÞðz0Þ
ðz � z0Þj

j!
þ
Z z

z0

gðzÞ ðz � zÞk�1

ðk � 1Þ! dz:

We have, for 04j5k; that

jj f ðjÞ � hðjÞjjLpðg;mjÞ4cjj f ðkÞ � gjjL1ðgÞ4cjj f ðkÞ � gjjLpðg;mkÞ;

and then

jj f � hjjW k;pðg;mÞ4cjj f ðkÞ � gjjLpðg;mkÞ with h 2 ACkðgÞ: ]

Theorem 6.2. Let us consider 14p51; c > 0 and m ¼ ðm0; . . . ; mkÞ a

p-admissible vectorial measure in a non-closed compact curve g : I ! C: Let

us assume that c�14jg0j4c and g0 2 W k�1;1ðIÞ: If m is a measure of type

1; 2; 3; 4 or 5; then P is dense in the Sobolev space W k;pðg; mÞ:

Proof. Let f0 2 V k;pðg; mÞ: By Theorem 6.1 we can approximate f0 by a
function f 2 ACkðgÞ: Let g be a continuous function approximating f ðkÞ in
the Lpðg; mkÞ and the L1ðgÞ norms (see [R3, Lemma 3.1]). Since g is non-
closed, we can choose a polynomial q approximating g in L1ðgÞ (and
therefore in the Lpðg; mkÞ and the L1ðgÞ norms). By fixing z0 2 g and
considering the function

QðzÞ :¼
Xk�1

j¼0

f ðjÞðz0Þ
ðz � z0Þj

j!
þ
Z z

z0

qðzÞ ðz � zÞk�1

ðk � 1Þ! dz;

we can finish the proof as above. ]

7. DENSITY IN ANALYTIC CLOSED CURVES

We deal first with the case of the unit circle @D:

Lemma 7.1. Let us consider 14p51; m 2 Zþ and m a finite scalar

measure in @D: Then the polynomials P are dense in Lpð@D;mÞ if and only if

1=zm belongs to the closure of P in Lpð@D; mÞ:

Proof. We prove first the result for m ¼ 1: The ‘‘only if ’’ direction is
immediate. In order to prove the non-trivial implication, assume that 1=z
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belongs to the closure of P: Then we have, for any r; n 2 Zþ;

distð1=z;PnÞp :¼ min
ai2C

Z
@D

jz�1 � ða0 þ a1z þ � � � þ anznÞjp dmðzÞ

¼ min
ai2C

Z
@D

jz�r � ða0z1�r þ a1z
2�r þ � � � þ anznþ1�rÞjp dmðzÞ

¼ distðz�r; spanfz1�r; z2�r; . . . ; znþ1�rgÞp:

This fact and an induction argument in r give that 1=zr belongs to the
closure of P in Lpð@D; mÞ; for every r 2 Zþ: Since any function in Lpð@D; mÞ
can be approximated by continuous functions in the norm of Lpð@D; mÞ; and
that any continuous function can be approximated uniformly in @D by
linear combinations of integer powers of z; we have that the polynomials are
dense in Lpð@D; mÞ:

We prove now that 1=zm belongs to the closure of P if and only if 1=z

belongs to the closure of P: The last argument gives that 1=zm belongs to the
closure of P if 1=z does. Assume now that 1=zm belongs to the closure of P:
Choose pn 2 P with jjpn � 1=zmjjLpðmÞ ! 0: Then

jjzm�1pn � 1=zjjLpðmÞ ¼ jjpn � 1=zmjjLpðmÞ ! 0;

so 1=z belongs to the closure of P; and this finishes the proof of the
lemma. ]

Proposition 7.1. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a finite

p-admissible vectorial measure in @D: If the polynomials are dense in W k;pð
@D; mÞ; then they are dense in Lpð@D; mjÞ for any 04j4k:

Proof. Fix 04j4k: The function 1=z can be approximated by
polynomials in W k;pð@D; mÞ: Then the function 1=zjþ1 can be approximated
by polynomials in Lpð@D; mjÞ: Lemma 7.1 gives now the result. ]

Definition 7.1. A scalar measure m in an analytic closed curve g with
absolutely continuous part w verifies the Szeg .oo condition ifZ

g
log wðzÞjdzj > �1:

The following theorem of Kolmogorov–Krein–Szeg .oo is well known (see,
e.g. [G, pp. 135–137]).

Theorem A. Let us consider 14p51 and a finite scalar measure m in
@D: Then the polynomials are dense in Lpð@D; mÞ if and only if m does not

verify the Szeg .oo condition.
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We have the following consequence of Proposition 7.1 and Theorem A.

Corollary 7.1. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a finite

p-admissible vectorial measure in @D: If for some 04j4k the measure

mj verifies the Szeg .oo condition, then the polynomials are not dense in

W k;pð@D; mÞ:

Remark. One could think that the converse of Corollary 7.1 is true.
However, if we consider A :¼ fz 2 @D : jarg zj4p=2g; B :¼ fz 2 @D : jarg
zj5p=4g (with arg z 2 ð�p; p	Þ; dm0ðzÞ :¼ wAðzÞjdzj and dm1ðzÞ :¼ wBðzÞjdzj;
then m0; m1 do not verify the Szeg .oo condition and the polynomials are not
dense in W 1;pð@D; mÞ; as the following results, which are improvements of
Corollary 7.1, show.

Theorem 7.1. Let us consider 14p51; m ¼ ðm0; . . . ; mkÞ a finite

p-admissible vectorial measure in @D with ð@D; mÞ 2 C0 and m a finite

sum of completions of m: If for some 04j4k the measure mj verifies

the Szeg .oo condition, then the polynomials are not dense in

W k;pð@D; mÞ:

Proof. Part (a) of Theorem 4.1 and the fact m5m give that the
polynomials are dense in W k;pð@D; mÞ if and only if they are dense in W k;p

ð@D; mÞ: Now Corollary 7.1 gives the result. ]

Corollary 7.2. Let us consider 14p51; a fixed integer 04j4k;
m ¼ ðm0; . . . ; mkÞ a finite p-admissible vectorial measure in @D with ð@D; mÞ 2
C0 and K a finite union of compact arcs with KDOðjÞ: If the measure mj

verifies

Z
@D=K

log wjðzÞjdzj > �1;

then the polynomials are not dense in W k;pð@D; mÞ:

Proof. Theorem 4.1 guarantees that we can take a measure m; as in
Theorem 7.1, such that wjðzÞ5wjðzÞ þ wKðzÞ: Then we only need to apply
Theorem 7.1. ]

As positive results on density of polynomials in @D we have
already proved the theorems in Section 6 when D; the union of the supports
of mj; is not equal to @D (it is enough to consider a non-closed curve g with
DDgÞ:

We deal now with general analytic closed curves.
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Proposition 7.2. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a finite

p-admissible vectorial measure in an analytic closed curve g: Let us assume

that m 2 ESD if k52: If for some 04j4k the measure mj verifies the Szeg .oo

condition, then the polynomials are not dense in W k;pðg; mÞ:

Proof. Let us consider a conformal map F between D and the simply
connected domain E bounded by g: Since g is analytic, we can extend F to
@D with F : %DD ! %EE biholomorphic.

Given the measure mj in g we define the measure mn
j in @D by mn

j ðAÞ :¼
mjðFðAÞÞ; for all Borel set AD@D: Since m 2 ESD if k52; the argument in
the proof of Theorem 5.2 gives that W k;pð@D; mnÞ and W k;pðg; mÞ are
isomorphic as normed spaces. By Mergelyan and Weierstrass theorems the
polynomials are dense in W k;pðg; mÞ if and only if the holomorphic functions
in %EE are dense in W k;pðg; mÞ: Therefore P is dense in W k;pð@D; mnÞ if and only
it is dense in W k;pðg; mÞ: Since wn

j ¼ jF 0jðwj 8 FÞ and there is a positive
constant c with c�14jF 0j4c in @D; mj verifies the Szeg .oo condition if and
only if mn

j does. These facts and Corollary 7.1 give the result. ]

The same argument used in the proof of Proposition 7.2 gives the
following generalization of the theorem of Kolmogorov–Helson–Szeg .oo.

Corollary 7.3. Let us consider 14p51 and a finite scalar measure m
in an analytic closed curve g: Then the polynomials are dense in Lpðg; mÞ if and

only if m does not verify the Szeg .oo condition.

The same proof of Theorem 7.1 and Corollary 7.2 (using now Proposition
7.2) gives the following results.

Theorem 7.2. Let us consider 14p51; m ¼ ðm0; . . . ; mkÞ a finite p-

admissible vectorial measure in an analytic closed curve g; with ðg; mÞ 2 C0

and %mm a finite sum of completions of m: Let us assume that m 2 ESD if k52: If

for some 04j4k the measure mj verifies the Szeg .oo condition, then the

polynomials are not dense in W k;pðg; mÞ:

Theorem 7.3. Let us consider 14p51; a fixed integer 04j4k;
m ¼ ðm0; . . . ; mkÞ a finite p-admissible vectorial measure in an analytic closed

curve g; with ðg; mÞ 2 C0 and K a finite union of compact arcs with KDOðjÞ:
Let us assume that m 2 ESD if k52: If the measure mj verifies

Z
g=K

log wjðzÞjdzj > �1;

then the polynomials are not dense in W k;pðg; mÞ:
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8. MULTIPLICATION OPERATOR

First of all, some remarks about the definition of the multiplication
operator. In this section we only consider measures such that
every polynomial has finite Sobolev norm. Recall that when
every polynomial has finite W k;pðE; mÞ-norm, we denote by Pk;pðE; mÞ
the completion of P with that norm. We start with a definition which
has sense for measures defined in arbitrary Borel sets (not necessarily
curves).

Definition 8.1. If m is a vectorial measure in the Borel set EDC; we say
that the multiplication operator is well defined in Pk;pðE; mÞ if given any
sequence fsng of polynomials converging to 0 in W k;pðE; mÞ; then fzsng also
converges to 0 in W k;pðE; mÞ: In this case, if fqng 2 Pk;pðE; mÞ; we define
MðfqngÞ :¼ fzqng: If we choose another Cauchy sequence frng representing
the same element in Pk;pðE;mÞ (i.e. fqn � rng converges to 0 in W k;pðE; mÞÞ;
then fzqng and fzrng represent the same element in Pk;pðE; mÞ (since fzðqn �
rnÞg converges to 0 in W k;pðE; mÞÞ:

We can also think of another definition which is as natural in the case of
curves:

Definition 8.2. If m is a p-admissible vectorial measure in g (and hence
W k;pðg; mÞ is a space of classes of functions), we say that the multiplication

operator is well defined in W k;pðg; mÞ if given any function h 2 Vk;pðg; mÞ
with jjhjjW k;pðg;mÞ ¼ 0; we have jjzhjjW k;pðg;mÞ ¼ 0: In this case, if ½ f 	 is an

equivalence class in W k;pðg; mÞ; we define Mð½ f 	Þ :¼ ½zf 	: If we choose
another representative g of ½ f 	 (i.e. jj f � gjjW k;pðg;mÞ ¼ 0Þ we have ½zf 	 ¼ ½zg	;
since jjzð f � gÞjjW k;pðg;mÞ ¼ 0:

Although both definitions are natural, it is possible for a p-admissible
measure m with W k;pðg; mÞ ¼ Pk;pðg; mÞ that M is well defined in W k;pðg; mÞ
and not well defined in Pk;pðg; mÞ (see Lemma 8.1 and Theorem 8.3).
The following lemma characterizes the spaces Pk;pðE; mÞ with M well
defined.

Lemma 8.1. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a vectorial

measure in a Borel set EDC: The following facts are equivalent:

(1) The multiplication operator is well defined in Pk;pðE; mÞ:
(2) The multiplication operator is bounded in Pk;pðE; mÞ:
(3) There exists a positive constant c such that

jjzqjjW k;pðE;mÞ4cjjqjjW k;pðE;mÞ for every q 2 P:
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Remark. When we say that the multiplication operator is bounded in
Pk;pðE; mÞ; we assume implicitly that it is well defined in Pk;pðE; mÞ; since
otherwise the boundedness has no sense.

Proof. It is clear that condition (3) implies (1). If we assume (1), we have
that the multiplication operator M is continuous in 0 2 ðP; jj � jjW k;pðE;mÞÞ:
Since M is a linear operator in the normed space ðP; jj � jjW k;pðE;mÞÞ; we know
that M is bounded in ðP; jj � jjW k;pðE;mÞÞ; which gives (3).

We now show the equivalence between (2) and (3). Let us consider an
element a 2 Pk;pðE; mÞ: This element a is an equivalence class of Cauchy
sequences of polynomials under the norm in W k;pðE; mÞ: Assume that a
Cauchy sequence of polynomials fqng represents a: The norm of a is defined
as jjajjPk;pðE;mÞ ¼ limn!1jjqnjjW k;pðE;mÞ; which obviously does not depend on

the representative. Hence, condition (2) is equivalent to

lim
n!1

jjzqnjjW k;pðE;mÞ4c lim
n!1

jjqnjjW k;pðE;mÞ;

for every Cauchy sequence of polynomials fqng: Now the equivalence
between (2) and (3) is clear. ]

Lemma 8.2. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a finite

vectorial measure in a compact set E: Then, the multiplication operator is

bounded in Pk;pðE; mÞ if and only if there exists a positive constant c such that

jjqðj�1ÞjjLpðE;mjÞ4cjjqjjW k;pðE;mÞ

for every 14j4k and q 2 P:

Proof. If M is bounded in Pk;pðE;mÞ; we have that

jjðzqÞðjÞjjLpðE;mjÞ4jjMjjjjqjjW k;pðE;mÞ

for every 14j4k and q 2 P: Since

jjðzqÞðjÞjjLpðE;mjÞ ¼ jjzqðjÞ þ jqðj�1ÞjjLpðE;mjÞ5jjqðj�1ÞjjLpðE;mjÞ � K jjqðjÞjjLpðE;mjÞ;

with K :¼ maxfjzj : z 2 Eg; we have

jjqðj�1ÞjjLpðE;mjÞ4K jjqðjÞjjLpðE;mjÞ þ jjMjj jjqjjW k;pðE;mÞ4ðK þ jjMjjÞjjqjjW k;pðE;mÞ

for every 14j4k and q 2 P:
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We now prove the converse implication. Observe that

jjðzqÞðjÞjjLpðE;mjÞ ¼ jjzqðjÞ þ jqðj�1ÞjjLpðE;mjÞ4jjjqðj�1ÞjjLpðE;mjÞ þ K jjqðjÞjjLpðE;mjÞ;

with K as before, for every 14j4k and q 2 P: Then

jjðzqÞðjÞjjp
LpðE;mjÞ

4 2p�1ðjpjjqðj�1Þjjp
LpðE;mjÞ

þ KpjjqðjÞjjp
LpðE;mjÞ

Þ

4 2p�1ðjpcpjjqjjp
W k;pðE;mÞ þ KpjjqðjÞjjp

LpðE;mjÞ
Þ

for every 14j4k and q 2 P (if j ¼ 0 the inequality is trivial). Consequently

jjzqjjp
W k;pðE;mÞ42p�1ðkpþ1cpjjqjjp

W k;pðE;mÞ þ Kpjjqjjp
W k;pðE;mÞÞ

and

jjzqjjW k;pðE;mÞ42ðp�1Þ=pðkpþ1cp þ KpÞ1=pjjqjjW k;pðE;mÞ

for every q 2 P: Hence, Lemma 8.1 proves that M is bounded in
Pk;pðE; mÞ: ]

In the following we often use the next result. We omit the proof since it is
elementary.

Lemma 8.3. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ; m0 ¼
ðm00; . . . ; m0kÞ vectorial measures in a Borel set EDC: If the Sobolev norms in

W k;pðE; mÞ and W k;pðE; m0Þ are comparable on P; then:

(1) Pk;pðE; mÞ ¼ Pk;pðE; m0Þ:
(2) M is bounded in Pk;pðE; mÞ if and only if it is bounded in Pk;pðE; m0Þ:

Theorem 8.1. Let us consider 14p51 and m ¼ ðm0; . . . ; mkÞ a finite

vectorial measure in a compact set E: Then, the multiplication operator is

bounded in Pk;pðE; mÞ if and only if there exists a vectorial measure m0 2 ESD
such that the Sobolev norms in W k;pðE; mÞ and W k;pðE; m0Þ are comparable on

P: Furthermore, we can choose m0 ¼ ðm0; . . . ; m0kÞ with m0j :¼ mj þ mjþ1 þ � � � þ
mk:

Remark. In order to apply Theorem 8.1, if E ¼ g is a curve, the best way
to deduce that jj � jjW k;pðg;mÞ and jj � jjW k;pðg;m0Þ are equivalent is to prove that m0

can be obtained by a finite number of completions of m (in that case we can
use Theorem 4.1).
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Proof. Assume that there exists a vectorial measure m0 2 ESD such that
the Sobolev norms in W k;pðE; mÞ and W k;pðE; m0Þ are comparable on P: By
Lemmas 8.2 and 8.3 it is enough to show

jjqðj�1ÞjjLpðE;m0
j
Þ4cjjqjjW k;pðE;m0Þ ð8:1Þ

for every 14j4k and q 2 P: The hypothesis m0 2 ESD gives

jjqðj�1ÞjjLpðE;m0
j
Þ4cjjqðj�1ÞjjLpðE;m0

j�1
Þ4cjjqjjW k;pðE;m0Þ;

and then we have (8.1).
Assume now that M is bounded in Pk;pðE; mÞ and let us consider the

vectorial measures m0; m1; . . . ; mk�1; mk defined by

mj
i :¼ mi if 04i5j;

mj
i :¼

Xk

l¼i

ml if j4i4k:

Observe that mk ¼ m and m0 is the measure m0 defined at the end of the
statement of Theorem 8.1. These vectorial measures verify, for 04i4k and
05j4k;

mj�1
i :¼ mj

i if iaj � 1; ð8:2Þ

mj�1
j�1 :¼ mj

j þ mj�1 ¼ mj
j þ mj

j�1: ð8:3Þ

Therefore we have jjqjjW k;pðE;mjÞ4jjqjjW k;pðE;mj�1Þ; for every q 2 P and
14j4k:

Since m0 2 ESD it is enough to show that the Sobolev norms in W k;pðE;
mkÞ and W k;pðE; m0Þ are comparable on P: We prove this by showing for
14j4k that the Sobolev norms in W k;pðE; mjÞ and W k;pðE; mj�1Þ are
comparable on P and M is bounded in Pk;pðE; mj�1Þ: We prove this last
statement by reverse induction on j: Assume that the induction hypothesis
holds for j þ 1: Then we have that M is bounded in Pk;pðE; mjÞ: Lemma 8.2
gives that

jjqðj�1ÞjjLpðE;mj

j
Þ4cjjqjjW k;pðE;mjÞ

for every q 2 P: This inequality and (8.3) show

jjqðj�1Þjjp
LpðE;mj�1

j�1
Þ4cpjjqjjp

W k;pðE;mjÞ þ jjqðj�1Þjjp
LpðE;mj

j�1
Þ4ðcp þ 1Þjjqjjp

W k;pðE;mjÞ
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for every q 2 P: This fact and (8.2) show that the Sobolev norms in
W k;pðE; mj) and W k;pðE; mj�1Þ are comparable on P: Then Lemma 8.3 shows
that M is bounded in Pk;pðE; mj�1Þ; since it is bounded in Pk;pðE; mjÞ: The
proof of the case j ¼ k is similar. This finishes the induction argument and
the proof of Theorem 8.1. ]

If we consider the case of a curve E ¼ g; we have the following results.

Theorem 8.2. Let us consider 14p51 and a p-admissible vectorial

measure m in g: If m is of type 1; 2 or 3; and the multiplication operator is well

defined in W k;pðg; mÞ; then it is bounded in Pk;pðg; mÞ:

Remark. In this situation Theorem 6.2 gives Pk;pðg; mÞ ¼ W k;pðg; mÞ if
g : I ! C is a non-closed curve with c�14jg0j4c and g0 2 W k�1;1ðIÞ: In this
case the multiplication operator is bounded in W k;pðg; mÞ:

Obviously, the multiplication operator M is well defined in W k;pðg; mÞ if
and only if it is well defined in Vk;pðg; mÞ (i.e. zf 2 V k;pðg; mÞ for every f 2
V k;pðg; mÞÞ and jjzf jjW k;pðg;mÞ ¼ 0 for every f 2 V k;pðg; mÞ with jj f jjW k;pðg;mÞ ¼
0: This second condition can be written as MðKðg; mÞÞDKðg; mÞ:

Theorem 8.3. Let us consider 14p51 and a p-admissible vectorial

measure m in g: Assume that the multiplication operator M is well defined in

Vk;pðg; mÞ: Then M is well-defined in W k;pðg; mÞ if and only if Kðg; mÞ ¼ f0g:

Proof. Suppose first that Kðg; mÞ ¼ f0g: Then, if f 2 V k;pðg; mÞ with
jj f jjW k;pðg;mÞ ¼ 0 we have jj f jjW k;pðg;mjOð0ÞÞ ¼ 0: Consequently f jOð0Þ � 0 and so

jjzf jjW k;pðg;mj
Oð0Þ Þ

¼ 0: On the other hand, we also have jj f jjLpðg;m0Þ ¼ 0; and so

f ðzÞ ¼ 0 for m0-almost every z 2 g: Then zf ðzÞ ¼ 0 for m0-almost every z 2 g
and jjzf jjLpðg;m0Þ ¼ 0: Observe that mj is concentrated in Oj [ OðjÞDOð0Þ for

14j4k: We deduce from these facts that

jjzf jjp
W k;pðg;mÞ4jjzf jjp

Lpðg;m0Þ
þ jjzf jjp

W k;pðg;mj
Oð0Þ Þ

¼ 0;

and therefore the multiplication operator is well defined in W k;pðg; mÞ:
On the converse, let us suppose that there is f 2 Vk;pðg; mÞ such that

jj f jjW k;pðg;mj
Oð0Þ Þ

¼ 0;

but f is not identically zero in Oð0Þ:We know that there exists an arc g0DOð0Þ

such that f jg0a0; and therefore there is another arc g1Dg0 such that g1DOi

for some 14i4k and f jg1a0: If g belongs to Kðg; mÞ; we have that gðiÞðzÞ ¼
0 for almost every z 2 Oi; and therefore that gði�1Þ is constant in each
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connected component of Oi: Then gjg1 2 Pi�1: Let us choose now h 2
Kðg; mÞ such that deg hjg15deg gjg1 for all g 2 Kðg; mÞ (we have deg hjg150

since the function f is not identically zero in g1Þ: Then, deg zhjg1 > deg hjg1 ;
therefore zh =2 Kðg; mÞ and M is not well defined. ]

Proof of Theorem 8.2. We divide this proof into three parts; each of
them will be devoted to each type of measure. Remember that in our
hypotheses we always have Kðg; mÞ ¼ f0g by Theorem 8.3. Therefore ðg; mÞ
2 C0; since Oð0Þ=ðO1 [ � � � [ OkÞ has at most two points (see Remark 1 after
Definition 4.2).

Measures of type 1. By Theorem 4.1 we have directly

jj f ðj�1ÞjjLpðg;mjÞ4cjj f ðj�1ÞjjL1ðgÞ4cjj f jjW k;pðg;mÞ

for all f 2 Vk;pðg; mÞ and 14j4k; since ðg; mÞ 2 C0: Now Lemma 8.2 gives
the conclusion.

Measures of type 2. A computation (using Muckenhoupt inequality)
gives that

cjj f ðj�1ÞjjLpð½z1;z2	;mjÞ4jj f ðjÞjjLpð½z1;z2	;mjÞ þ j f ðj�1Þðz2Þj

for k14j4k: Then Theorem 4.1 gives

jj f ðj�1ÞjjLpð½z1;z2	;mjÞ4cjj f jjW k;pðg;mÞ: ð8:4Þ

If k1 > 1; again by Theorem 4.1, we have

jj f ðj�1ÞjjLpð½z1;z2	;mjÞ4cjj f ðj�1ÞjjL1ð½z1;z2	Þ4cjjf jjW k;pðg;mÞ;

for all f 2 V k;pðg; mÞ and 14j5k1; since z1 is right ðk1 � 1Þ-regular (and
then ½z1; z2	DOðk1�1ÞÞ: Therefore (8.4) is true for all f 2 V k;pðg; mÞ and 14j

4k: The arc ½z3; z2	 is treated in a symmetric way and we obtain an
inequality similar to (8.4). The arc ½z2; z3	 needs the same argument as
measures of type 1.

Measures of type 3. Condition (1) of measures of type 3 gives

jj f ðj�1ÞjjLpðV ;mjÞ4cjj f ðj�1ÞjjLpðV ;mj�1Þ
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for r5j4k: If r > 0; Theorem 4.1 gives

jj f ðj�1ÞjjLpðV ;mjÞ4cjj f ðj�1ÞjjL1ðVÞ4cjj f jjW k;pðg;mÞ

for 14j4r: Consequently, we have

jj f ðj�1ÞjjLpðV ;mjÞ4cjj f jjW k;pðg;mÞ;

for 14j4k: The arc g=V needs the same argument as measures of type 1. ]

Theorem 8.4. Let us consider 14p51 and a finite p-admissible vectorial

measure m in a compact curve g: Assume that ðg; mÞ 2 C0 and that for each

14j4k we have mjðg=ðJj�1 [ Kj�1ÞÞ ¼ 0; where Kj�1 is a finite union of

compact arcs contained in Oðj�1Þ and Jj�1 is a Borel set with mj4cmj�1 in Jj�1:
Then the multiplication operator is bounded in Pk;pðg; mÞ:

Proof. We have by mjðgÞ51 and Theorem 4.1

jjgðj�1ÞjjLpðKj�1;mjÞ4cjjgðj�1ÞjjL1ðKj�1Þ4cjjgjjW k;pðg;mÞ

for every 14j4k and g 2 W k;pðg; mÞ: The hypothesis on Jj�1 gives

jjgðj�1ÞjjLpðJj�1;mjÞ4cjjgðj�1ÞjjLpðJj�1;mj�1Þ4cjjgjjW k;pðg;mÞ:

These two inequalities imply

jjgðj�1ÞjjLpðg;mjÞ4cjjgjjW k;pðg;mÞ

for every 14j4k and g 2 W k;pðg; mÞ: Lemma 8.2 finishes the proof. ]
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